1 3/8" Isolator ( Assembly)

S—E=
Torsional induced shear
: —>
stresses throughout — where is
it maximum?
Other loadings to consider?

(welcome to my nightmare)

< Torsion Load=300 Ib-ft




Ch 5 - Torsion

Circles remain
circular

Before deformation
(a)
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Longitudinal
lines become
twisted

Recall: External loads (T)
produce internal loads which
produce deformation, strain and

t Radial lines
SUress. remain straight

After deformation
(b)
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Before Torque
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After Torque
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‘




5.1 Torsional Deformation of a Circular Shaft

Deformed
plane

Undeformed
plane

The angle of twist ¢(x) increases asx increases.

Copyright © 2005 Pearson Prentice Hall, Inc.

d(x) = angle of twist
(varies linearly along
the length, 0 at x =0,
max at x =L)



Recall y = shear strain (rad)

Undpf;zr)ll;:med 7/ _ pA¢ _ @
Ax dx

Shear strain of element
<

Notice, shear strain, y
varies linearly with radial
distance, p, and 1s max on
the outer surface!!
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Notice, shear strain, y
varies linearly with radial
distance, p, and is max on
the outer surface!!

Distance from
center to point of
interest

yo,

The shear strain for the 7/ —| — 7/ max
C

material increases linearly
with p, i.e., Y= (0/C)Ymax
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Distance from center
to outer fiver (i.e.
outer radius)

‘




What have we learned so far?

» ¢ = angle of twist varies from zero at fixed
support to max at end.

» v = shear strain varies from zero at center to
max at outer fiber.




What about stress???

» Deformation = strain
» Strain = stress

» If you can visualize deformation, you can
visualize stress

» The stress is a shear stress!!




5.2 The Torsion Formula

Shear stress varies linearly along
each radial line of the cross section.
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If linear elastic, Hooke’s
law applies, t = Gy

Therefore, stress follows
same profile as strain!!

:BT

max
C



EMCH13
Derivation — simple Torque

balance. The torque
produced by the stress
distribution over the entire
cross section must be equal to
the resultant internal torque,
or:

\\
o ) C
Shear stress varies linearly along
each radial line of the cross section. ’Z-
T max
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C \,

This is simply polar moment

of inertia, J (an area property)




The torsion formula (see derivation):

T —

max

/

Max shear stress
in shaft (MPa,
psi/ksi, etc.)

S

TC <«———1 Outer radius of

Torque (N-m, N-
. mm or lb-in, Ib-
ft, etc)

J

shaft (m or in)

AN

Polar moment of
inertia (m* or in#)

or




J = polar moment of inertia

» Solid shaft: *Hollow shaft:

:§c4 J:%(cj—cf)




Stress Profiles:
Shear stress profile — YOU

MUST UNDERSTAND
% THIS!!!

Where 1s shear stress max?
zero? How does it vary along
the length and
circumference?

(a)
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Shear stress varies linearly along
each radial line of the cross section.

(b)
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Failure of a wooden shaft due to torsion.
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B



1. Analysis: Want << tallow

Find
2. Design: geometry




EEXEARNIAREIRER 5.3

The shaft shown in Fig. 5-12a is supported by two bearings and is
subjected to three torques. Determine the shear stress developed at
points A and B, located at section a—a of the shaft, Fig. 5-12b.

42.5 kip-in.
' 42.5 kip-in.

ol

=

(@) * (®)

- ) 30 kip-in.

o @

x

Fig. 5-12

Solution

Internal Torque. The bearing reactions on the shaft are zero, provided
the shaft’s weight is neglected. Furthermore, the applied torques satisfy
moment equilibrium about the shaft’s axis.




The internal torque at section a—-a will be determined from the free-
body diagram of the left segment, Fig. 5-12b. We have

SM, =0, 425kip-in. —30kip-in. —7 =0 7T = 12.5kip-in.

Fig. 5-12

A
@, 18.9 ksi
&

3.71 ksi

S |

Section Property. The polar moment of inertia for the shaft is

J= 3(0.75 in.)* = 0.497 in®

Shear Stress. Since point A is at p = ¢ = 0.75 in,,

12.5 kip +in.)(0.75 in.
o e e D 1“?(4 ) _ 189 ksi
J (0.497 in®)

0.75in.=  0.15in. .
Likewise for point B, at p = 0.15 in., we have

Tp  (12.5kip-in.)(0.15 in.
L g LI ) T Ans,
J (0.497 in)

(c)

The directions of these stresses on each element at A and B, Fig. 5-12c,
are established from the direction of the resultant internal torque T,
shown in Fig. 5-12b. Note carefully how the shear stress acts on the planes
of each of these elements.




EXAMPLE

5.4

The pipe shown in Fig. 5-13a has an inner diameter of 80 mm and an
outer diameter of 100 mm. If its end is tightened against the support at
A using a torque wrench at B, determine the shear stress developed in
the material at the inner and outer walls along the central portion of the
pipe when the 80-N forces are applied to the wrench.

Solution

Internal Torque. A section is taken at an intermediate location C along
the pipe’s axis, Fig. 5-13h.The only unknown at the section is the internal
torque T. Force equilibrium and moment equilibrium about the x and z
axes are satisfied. We require

M =1 S8ON(0.3m) + 8ON(0.2m) =T =0

T =40N-m
Section Properry.  The polar moment of inertia for the pipe’s cross-
sectional area is
s

J =
2

[(0.05m)* — (0.04 m)*] = 5.80(10°°) m*




80N

Shear Stress. For any point lying on the outside surface of the pipe,
p = ¢, = 0.05 m, we have

Tc, 40N-m(0.05m)
T, = = —— = 0.345 MPa Ans.
J 5.80(107°) m

And for any point located on the inside surface, p = ¢; = 0.04 m, so that

T¢;  40N-m(0.04 m)
T, = = s = (0.276 MPa Ans.
J 5.80(107%) m*

To show how these stresses act at representative points D and £ on
the cross-sectional area, we will first view the cross section from the front
of segment CA of the pipe, Fig. 5-13a. On this section, Fig. 5-13c¢, the
resultant internal torque is equal but opposite to that shown in Fig. 5-13b.
The shear stresses at D and E contribute to this torque and therefore
act on the shaded faces of the elements in the directions shown. As a
consequence, notice how the shear-stress components act on the other
three faces. Furthermore, since the top face of D and the inner face of
E are in stress-free regions taken from the pipe’s outer and inner walls,
no shear stress can exist on these faces or on the other corresponding
faces of the elements.




(a) (b)
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5.3 Power Transmission

» Nothing new, just calculate Torque, T,
from power equation:

Power (watts, ft-Ib/s

or hp)
P/: To

T

Angular velocity (rad/s or Hz)

Torque (N-m, Ib-
ft)

Careful with units!

Note: 1 hp = 550 ft-Ib/s

) = 27?6 f=Hz or rev/s

e



Examples (English):

» Shaft powered by 5 hp electric motor spins at
10 Hz, find Torque in shaft.

P =Tw

5 hp (550 ft-Ib/s/hp) 10 Hz (2= rad/rev) = 62.83 rad/s
= 2,750 ft-Ib/s

T=2750 ft-Ib/s =43.76 Ib-ft

62.83 rad/s




Examples (SI):

» Shaft powered by 500 W electric motor spins
at 10 Hz, find Torque in shaft.

»P=Tw
10 Hz (2= rad/rev) = 62.83 rad/s

T=500N-m/s =7.96 N-m

62.83 rad/s




Your HW prob 5.39:
Find stress throughout
shaft:
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Steps:
1. Find Torque throughout shaft

2. Solve for stress throughout shaft




Prob 5.42: The motor delivers 500 hp to the steel shaft AB
which 1s tubular and has an inside dia of 1.84 1n and
outside of 2 in. Find: smallest angular velocity at which
the shaft can rotate if tailow = 25 ksi

Design or Analysis:

Steps:
1. Find allowable
torque

2. Back solve for
speed using P=Tn

Copyright © 2005 Pearson Prentice Hall, Inc.




