Chapter 1 - Introduction

- Load-Stress and Load-Deflection Relationships
 - Mechanics of Materials Methods
 - Continuum Mechanics/Elasticity methods
 - Energy Methods
- Stress-Strain Relations
 - Elastic and Inelastic Response
 - Material Properties
 - Load-Carrying Members
- Failure Modes and Theories

Load-Stress Relationships

- 1. The equations of equilibrium or equations of motion.
- 2. Compatibility or continuity conditions (no overlaps or voids).
- 3. Constitutive equations.

Mechanics of Materials Methods

Based on simplifying assumptions related to the geometry of the deformation so that a strain distribution for a cross section of a member can be found. Uses of Mechanics of Materials Methods

- Non-symmetric bending (Ch. 7)
- Shear Center (Ch. 8)
- <u>Curved Beams (Ch. 9)</u>
- Beams on Elastic Foundations (Ch. 10)

Continuum Mechanics (Elasticity) Approach

Based on infinitesimal volume element at a point in the body with faces normal to coordinate axes. Differential equations of equilibrium and compatibility are applied and solutions sought. Uses of Continuum Mechanics Methods

- Noncircular torsion (Ch. 6)
- Thick-walled Cylinders (Ch. 11)
- <u>Contact Stresses (Ch. 17)</u>
- Stress Concentrations (Ch. 14)

Stress-Strain Relations

Stress components must be related to the strain components.

In Elementary Mechanics of Material, we have studied.

Axial load

$$\sigma = P/A$$
, $e = PL/AE$
 $\epsilon = P/AE = \sigma/E$

 $\begin{array}{l} \textbf{Bending moment} \\ \sigma = - My/I, \quad \tau = VQ/bI \\ d^2v/dx^2 = M/EI \end{array}$

Torsional load $\tau = Tr/J, \quad \psi = TL/GJ$ $\gamma = \tau /G = \psi r/L$

These formulas are based on certain simplifying assumptions and are applicable only under certain restrictions.

Axial load

Assumptions:

- Uniform and Prismatic (straight) bar, rod, tube etc.
- Homogenous material.
- Load 'P' directed axially along the centroidal axis of cross section.

Assumptions:

Uniform prismatic beam (L > 10 × b).

 Carries load that produce deflection perpendicular to its longitudal axis.

- Bending relative to principal axis only
- Linear elastic material.

 Applicable to small deflection and as long as deflection is in circular arc, ie. d²v/dx² is a good approximation of the beam curvature.

Cantilever beam problem:

Simply supported beam problem:

$$\theta(x) = -\frac{P(2L-x)x}{2EI}$$

w

•• *

$$\mathbf{V}(x) = -\frac{P x^2 (\beta L - x)}{\delta EI}$$
 $\mathbf{V}_{\max} = w(L) = -\frac{P L^3}{\beta EI}$

Torsional load

Assumptions:

- Prismatic & circular (solid or hollow but thick) torsional member
- Homogenous material
- Sections at which torques are applied are remote from ends.

Methods of analysis

(Load-stress load-deflection relations)

Method of mechanics of material

Equations of equilibrium

Continuity condition

Σσ**/**ε **= Ε**

Method of continuum mechanics & Elasticity

Equilibrium equation for elemental volume

Differential compatibility equation

Generalized Hooke's law Energy methods

Also called scalar method.

Plane cross section of member remain plane after deformation

Material Properties

- Modulus of Elasticity
- Poisson's Ratio
- Shear Modulus
- Percent Elongation

- Yield Strength
- Ultimate tensile
 Strength
- Yield Point
- Modulus of Resilience

Necking

Things We Can Learn from Stress-Strain Diagrams:

Almost all of the mechanical properties of a material can be obtained from its axial and shear stress-strain diagrams. Poisson's ratio is the only exception

- ✓ Proportional-limit stress & strain in tension and compr.
- ✓ Yield stress and strain in tension and compression
- ✓ Ultimate stress and strain in tension and compression
- ✓ Failure stress and strain in tension and compression
- ✓ Resilience
- ✓Toughness
- ✓ Elongation
- ✓ Ductility and brittleness

Engineering Stress and Strain

True Stress and Strain

Structural steel

150

Structural steel

Experimental Stress-Strain plot for 1018 steel

Characteristic stress-strain curve for brittle material

Aluminum

Si — Gray Cast Iron **Cast Iron**

Characteristic stress-strain curve for ductile material

2024-T351 Aluminum Alloy

Stress-strain curve for compression

Young's Modulus

Proportional limit

Yield Strength

Resilience

Amount of energy absorbed by a material in the elastic region

Amount of energy absorbed by a material up to the fracture

Tangent Modulus

Secant Modulus

Slope of a line tangent to the stress-strain curve at the point of interest. It is used to describe the stiffness of a material in the plastic range

Slope of a line from the origin of the stress-strain diagram and intersecting the curve at the point of interest. It is also used to describe the stiffness of a material in the plastic range

Poisson's ratio

Poisson's ratio can be determined indirectly from stress-strain curve by knowing the change in the cross-sectional area of the specimen at a point along the elastic region of the stress-strain curve.

Some interesting points about Poisson's ratio

The Poisson ratio for most metals falls between 0.25 to 0.35.

>Rubber has a Poisson ratio close to 0.5 and is therefore almost incompressible!

Cork has a Poisson ratio close to zero. (This makes cork function well as a bottle stopper, since an axially-loaded cork will not swell laterally to resist bottle insertion.)

➤The Poisson's ratio is bounded by two theoretical limits: it must be greater than -1, and less than or equal to 0.5,

(It is rare to encounter engineering materials with negative Poisson ratios.)

Failure and limits on design:

(isotropic material)

Stress based criteria			For isotropic materials, only two independent elastic constants are needed for describing the stress-strain relationship, i.e., Hooke's Law $\sigma/\epsilon = E$	
	Material Type		Failure Theories	
	Ductile	Maximum shear stress criterion, von Mises criterion		
	Brittle	Maximum	n normal stress criterion, Mohr's theory	
Non-Stress based criteria			eria Coulomb-Mohr criteria	
Stiffness, vibrational characteristics, fatigue resistance, creep resistance etc.				

