
BENDING MOMENTS AND 
SHEARING FORCES IN BEAMS



 A structural member which is
long when compared with its
lateral dimensions, subjected to
transverse forces so applied as to
induce bending of the member in
an axial plane, is called a beam.



 Beams are usually described by the manner in 
which they are supported.   

 For instance, a beam with a pin support at one 
end and a roller support at the other is called a 
simply supported beam or a simple beam ( 
Figure 3.1a).  

 A cantilever beam (Figure 3.1b) is one that is 
fixed at one end and is free at the other.  The free 
end is free to translate and rotate unlike the fixed 
end that can do neither. 





 The third example is a beam with an overhang
(Figure 3.1c).

 The beam is simply supported at points A and B
but it also projects beyond the support at B.

 The overhanging segment is similar to a cantilever
beam except that the beam axis may rotate at
point B.



 A load can be classified as:
 (i) Concentrated: which is regarded as acting

wholly at one. Examples are loads P, P2, P3 and
P4 in Figure 3.1.

 (ii) Distributed Load: A load that is spread along
the axis of the beam, such as q in Figure 3.1 a.
Distributed loads are measured by their intensity,
which is expressed in force per unit distance e.g.
kN/m.



 A uniformly distributed load, or uniform load has
constant intensity, q per unit distance (Figure 3.1.
a).

 A linearly varying load (Figure 3.1 b) has an
intensity which changes with distance.

 (iii) Couple: This is illustrated by the couple of
moment M acting on the overhanging beam in
Figure 3.1 c).



 When a beam is loaded by forces or couples, 
stresses and strains are created throughout the 
interior of the beam.  

 To determine these stresses and strains, the 
internal forces and internal couples that act on the 
cross sections of the beam must be found.  



 To find the internal quantities, consider a 
cantilever beam in Figure 3.2 . 

 Cut the beam at a cross-section mn located at a 
distance x from the free end and isolate the left 
hand part of the beam as a free body (Figure 3.2 
b).  

 The free body is held in equilibrium by the force P 
and by the stresses that act over the cut cross 
section.  



 The resultant of the stresses must be such as 
to maintain the equilibrium of the free body. 

 The resultant of the stresses acting on the
cross section can be reduced to a shear force
V and a bending moment M.

 The stress resultants in statically determinate
beams can be calculated from equations of
equilibrium.



Summing forces in the vertical direction and also taking  

moments about the cut section: 

  Fx   =  0  i.e.   P – V =  0  or V  =  P 

  M =  0  i.e.   M – Px  or   M =   Px 
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 Shear Force: is the algebraic sum of the vertical
forces acting to the left or right of the cut section

 Bending Moment: is the algebraic sum of the 
moment of the forces to the left or to the right of 
the section taken about the section





 Positive directions are denoted by an internal
shear force that causes clockwise rotation of the
member on which it acts, and an internal moment
that causes compression, or pushing on the upper
arm of the member.

 Loads that are opposite to these are considered
negative.



These relationships are quite useful
when investigating the shear forces
and bending moments throughout the
entire length of a beam and they are
especially helpful when constructing
shear-force and bending moment
diagrams in the Section 3.5.



 Consider an element of a beam cut between two 
cross sections that are dx apart (Figure 3.4a).  

 The shear forces and bending moments acting on 
the sides of the element are shown in their 
positive directions.  

 The shear forces and bending moments vary 
along the axis of the beam. 





 The values on the right hand face of the element 
will therefore be different from those on the left 
hand face.  In the case of distributed load, as 
shown in the figure, the increments in V and M are 
infinitesimal  and so can be denoted as dV and dM 
respectively.  



 The corresponding stress resultants on the right 
hand face are V + dV and M + dM.  

 In the case of concentrated load (Figure 3.4b), or 
a couple (Figure 3.4c), the increments may be 
finite, and so they are denoted V1 and M1.    

 The corresponding stress resultants on the RHS 
face are V + V1 and M + M1.



        From Figure 3.4 a: 

 Fy =  0  i.e.     V  -  q dx  -  (V + dV)  =  0 

  - q dx – dV   =  0  and: 

                        
dV
dx

q        …………   (3.1) 

This means that the rate of change of shear force at any point  

on the axis of the beam is equal  to the negative of the intensity of  

the distributed load at that same point.   



If there is no distributed load on a segment of a beam (i.e.  q = 0),  

then 
dV
dx

 0   and the shear force is constant in that part of the beam.   

Also, if the distributed load is uniform along part of the beam (q is constant),  

then  
dV
dx

  is also a constant and the shear force changes linearly in that part of the 

beam. 

  



Taking Moments about  the LHS of the element in Figure 3.4.a: 

 

 M =  0  i.e.    – M  -  q dx (dx/2)  -  (V +dV) dx  +  M  +  dM  =  0 

Neglecting products of differentials since they are small compared to other terms: 

 - V dx  +  dM  =  0    and: 

 

  
dM
dx

V            …………………………..   (3.2) 

This equation means that the rate of change of the bending moment at any point on the 

axis of a beam is equal to the shear force at that same point.  For instance, if the shear 

force is zero in a region of the beam, then the bending moment is constant in that region.



 Note that equation 3.2 applies only in regions
where distributed loads or no loads act on the
beam.

 At a point where a concentrated load acts, a
sudden change (or discontinuity) in the shear
force occurs and the derivative dM/dx is
undefined at that point.



 Fy  =  0  i.e.  V – P -  (V + V1)  =  0        or  V1  =  - P 

This means that an abrupt change in the shear force occurs   

at any point where a concentrated load acts.   

As one passes from left to right through the point of load  
application, the shear force decreases by an amount  P. 

Taking Moments about the LHS face of the element: 

 

- M  -  P (dx/2)  -  (V  +  V1) dx  +  M  +  M1  =  0  

M1  =  P (dx/2)  +  V dx  +  V1 dx 

Since  dx is small,  M1 is also small and this means that the  

bending moment does not change as we pass through  
the point of application of a concentrated load. 
 



 Determine the equation for Bending Moment
and Shear force for the beam below:

W kN/m 

 

 

 WL/2 

 WL/2 

L 

 



dV
dx

wx    

Vx  =  -  w x  +  C1 

 

dM
dx

Vx
x  

Mx =  - w /2  x2  +  C1 x  +  C2 

Boundary Condition:  At x  =  0,  Mx   =  0                           -  Simply supported beam 

i.e.  C2  =  0 

 

i.e.  Mx  =  -  w/2  x2  +  C1 x 

 

Boundary Condition:  At x  =  L,  Mx  =  0                           -  Simply supported 

i.e.  0  =  - w/2  L2  +  C1 L     and  C1  =  w L/2 

 

i.e.  Mx  =  w L/2  x  -  w x2/2 
       Vx  =  -  w  x  +  w L/2 
 
 



 When designing a beam, there is the
need to know how the bending moments
vary throughout the length of the beam,
particularly the maximum and minimum
values of these quantities.



 Draw the shear and bending moment diagrams 
for the beam shown in the Figure.
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(i) First determine the reactions at  A  and  B.  These are equal to 2.5 kN 

each. 

(ii) Cut the beam at an arbitrary section x after A but before B 

                                                                  

                                        2.5 kN             V M 

                                                                x 

 

The unknown forces V and M are assumed to act in the positive sense on the right hand 

face of the segment according to the sign convention:  

   V  =  2.5 kN             (1) 

  i.e.    M  =  2.5 x  kN.m       (2) 



(i) Now choose another section along BC after the 5 kN load (2 m < x < 4 m)

                                           2 m                          x 

                                                                5 kN                       

     V    M 

                        2.5 kN x - 2 x 

 x 

 

     V  =    2.5  kN   - 5 kN =  - 2.5 kN         (3) 

     M =       2.5 x  -  5 (x –2)  =    (10 - 2.5x ) kN.m           (4) 

 





Simpler Method For Drawing Shear Force and Bending Moment Diagrams 

(i) The Shear forces (V) can be determined by mental arithmetic using the 

convention that the upward force at the LHS section is positive and downward 

force  is negative.  Also downward force at the RHS of the beam is positive while 

the upward force is negative:  Starting from the LHS of beam: 

  At  A:  V = 2.5 kN 

    At B:   ,  V  =  2.5 – 5 =  - 2.5 kN 

 At  point C:  V  =  -2.5 kN (upward force at the right of beam) 

(ii) For bending moment (BM), remember that at the LHS of a beam, clockwise 

moment is positive and anti-clockwise is negative.  Starting from the LHS: 

At A:  B.M. is zero         …  Simply supported beam 

At B:   B.M  =  2.5  x 2  =  5   kN m 

At C:  B.M.  is zero    ….   Simply supported beam                                            



 Draw the shear and bending moment diagrams
for the beam AB



 Because the beam and its loading are symmetric,
RA and RB are q L/2 each. The shear force and
bending moment at distance x from the LHS are:

 V = RA - q x = q L/2 - q x
 M = RA x - q x (x/2) = q L x /2 - q x2/2
 These equations, are valid throughout the length

of the beam and are plotted as shear force and
bending moment diagrams.



`Note:  The slope of the inclined straight line representing the  

shear force is – q which agrees with equation 3.1.  Also at each  

cross section, the slope of the bending moment diagram is equal to the 

 shear force as shown in equation 3.2, thus: 

 
dM
dx

d
dx

q L x q x q L q x V    ( )
2 2 2

2

 

 
The maximum  bending moment occurs at the midpoint of the beam; 

therefore, we substitute x  = L/2 into the expression for M to obtain: 

 
  Mmax  =  qL2/8   as shown on the diagram. 
 





Draw the shear and bending moment diagrams for the beam  AB   
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 Find RA and RB
 Fy = 0 i.e. RA + RB = (1.8 x 2.6) + 4 kN =

8.68 kN
 MB = 0 i.e. - 4 RA + 2.4 x 4 + ( 1.8 x 2.6) x

( 4 - 1.3 ) = 0
 4 RA = 9.6 + 12.63 = 22.23;
 RA = 5.56 kN
 RB = 8.68 - 5.56 = 3.12 kN



(i) Using the usual convention:   At point A:  V  =  5.56 kN 

         At point C,  V  =   5.56 – (1.8 x 1.6)  =  5.56 – 2.88 = 2.68 kN 

            At point C also, because of the 4 kN load, the V is also equal to 2.68 – 4 =  

                               =   - 1.32 kN 

 At point D:  V  =  5.56  - (1.8 x 2.6) – 4  =  5.56 – 4.68 – 4 =  - 3.12 kN 

 At point B:   V  =  - 3.12 kN  -  upward force on right of section. 

(ii) For the Bending moment: 

At point A:  B.M. is zero ….   Simply supported beam 

At point C:  B.M.  =  (5.56  x 1.6)  -  (1.8  x 1.6) x 0.8  =  8.896 – 2.304 

                    =  6.59 kN m 

At point D:  B.M  =  (5.56 x 2.6 )  -  (4 x 1)  - (1.8 x 2.6) x 1.3 

                            =  14.456  -  4  -  6.084  =  4.37  kN m 

At point B,   B.M  is  zero.     …..  Simply supported beam. 
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 It is important to distinguish between pure bending
and non-uniform bending.

 Pure bending is the flexure of the beam under a
constant bending moment. Therefore, pure
bending occurs only in regions of a beam where
the shear force is zero because V = dM/dx.

 Non-uniform bending is flexure in the presence of
shear forces, and bending moment changes along
the axis of the beam.



 (i) Beams are initially straight
 (ii) The material is homogenous and isotropic i.e. it

has a uniform composition and its mechanical
properties are the same in all directions

 (iii)The stress-strain relationship is linear and
elastic

 (iv) Young’s Modulus is the same in tension as in
compression

 (v) Sections are symmetrical about the plane of
bending



 Sections which are plane before bending remain 
plane after bending.

 The last assumption implies that each section
rotates during bending about a neutral axis, so
that the distribution of strain across the section is
linear, with zero strain at the neutral axis.



 The beam is thus divided into tensile and
compressive zones separated by a neutral
surface.

 The theory gives very accurate results for stresses
and deformations for most practical beams
provided that deformations are small.



 Consider an initially straight beam, AB under 
pure bending.  

 The beam may be assumed to be composed of 
an infinite number of longitudinal fibers. 

 Due to the bending, fibres in the lower part of 
the beam extend and those in the upper parts 
are shortened.  

 Somewhere in-between, there would be a layer 
of fibre that has undergone no extension or 
change in length.  

 This layer is called neutral surface. 





The line of intersection of the
neutral surface with the cross-
section is called Neutral Axis of
the cross section.





Equilibrium Equations 
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(as there is no normal force acting on the cross section) 
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This integral is called first moment of area of the cross section.  Hence, neutral axis 

coincides with the centroidal  axis. 

 



Second Condition 
 

 y dA E
R

y dA M
A A

 z z2  

 

y dA
A

2z is called the second moment of area or the moment of inertia of the cross 

section about the neutral axis  i.e.     I NA 

 

  y dA E
R

y dA M
A A

 z z2  

 

i.e.  
E
R

I M B ........( )  

Combining equations A and B, we get: 

          

          
M
I y

E
R

 


        This is the elementary bending formula 



To calculate the stress, use the first two equations.  That is: 

  
M
I

y C............( )  

To calculate Radius of Curvature: 

 

   
1
R

M
E I

D..........( )  

This means that  radius of curvature ( )  is directly proportional to M and inversely 

proportional to EI.     EI    is called the flexural rigidity. 

 

 
M
I

y :  Stresses are normally calculated on the extremes i.e. compression and 

tensile maximum stresses. 

 

i.e.   max max 
M
I

y M
Z

 

 

Where:    Z I
y


max

  called ‘Modulus of the Section’  (Section Modulus) 



Moment of resistance of the cross section,    M  =     Z 

   Z   will be equal or less than applied moment for the section to be safe. 

The magnitudes of the maximum compressive stress and the minimum tensile stress are 

the same. 
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 Non-Uniform Bending:  In the case of non-
uniform bending of a beam, where bending 
moment varies from section to section, there will 
be shear force at each cross section which will 
induce shearing stresses.  

 Also these shearing stresses cause warping (or 
out-of-plane distortion) of the cross section so that 
plane cross sections do not remain plane even 
after bending.  



 This complicates the problem but it has been 
found by more detailed analysis that normal 
stresses calculated from simple bending formula 
are not greatly altered by the presence of shear 
stresses.  

 Thus we may justifiably use the theory of pure 
bending for calculating normal stresses in beams 
subjected to non-uniform bending.



Example:  A cantilever AB of length, 1 m carries a uniformly distributed load, w N/m 

from the fixed end A to the free end B.  If the Cantilever consists of a horizontal plate of 

thickness 10 mm and width 120 mm as shown in the figure below, calculate the total 

permissible distributed load, w if the maximum bending stress is not to exceed 100 

MN/m2.  Ignore the weight of the plate. 
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Solution 
 x 
 w   N/m 
 
 
  
          x  
  
 L 
 
 
 
  M  =    -  w x 2 /2    (for  0  <   x  < 0)                 (x is from right to left) 
 
 
At  x  =  0,   Mx  =  0 

At  x =  L/2,   Mx  =  -  w/2 ( L/2)2  =   - w L2/8 

At   x  =  L,  Mx  =  -  w L2/2       .  The negative sign shows that the bending involves 

hogging rather than sagging. 

  



So the maximum bending moment  (Mmax )  is     w L2/2      (Numerical maximum).   

For L = 1 m,   Mmax  =   w/2    N.m 

Moment of inertia of a rectangular cross section (I x)  =  b d3/12    

              =   0.12 m  x  0.013    =  1  x  10 –8  m4 

                               12 

 Maximum stress ,  max  =  Mmax   ymax /  Ix         

             

For a rectangle  ymax  =    d/2  =  10/2  =  5 mm    (d is thickness) 

        max    is given as   100 x  106  N/m2 

 

     M N m I
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x N m x x m
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   =  200  N/m2   =       w/2 
 
Therefore  the permissible distributed load,    w  =  400 N/m2 
 
Note:  Since the maximum bending moment is negative, the maximum tensile stress 

occurs at the top  of the beam while the maximum compressive stress occurs at the 

bottom. 



Example:  A uniform  T-section beam is 100 mm wide and 150 mm deep with a flange 

thickness of 25 mm and a web thickness of 12 mm.  If the limiting bending stresses for 

the material of the beam are 80 MN/m2 in compression and 160 MN/m2 ,  find the 

maximum uniformly distributed load (u.d.l) that the beam can carry over a simply 

supported span of 5 m. 
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The second moment of area, I can now be found by dividing the section 

into convenient rectangles with their edges in the neutral axis. 

 

   I x x x x x xxx    
12 125

12
12 125 46 9 100 25

12
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3
2

3
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         =  1953125  +  3299415  +  130208.3  +  1974025 

         =  7356773.3  mm4  =  7.36  x  10-6  m4 

Maximum compressive stress will occur at the upper surface, where y  =  40.6 mm and 

using the limiting compressive stress value quoted: 
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This suggests a maximum allowable bending moment of 14.5 kN m.  It is 

now necessary, however, to check the tensile stress criterion which must apply 

on the lower surface, 
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The greatest moment that can therefore be applied to retain stresses within both 

conditions quoted is therefore  M  =  10.76 kN m 

 

But for a simply supported beam with u.d.l,      Mmax  =  w L2/8    
 
   W  =  8 M/L2  =   (8  x  10.76  x  103) / 52  =  3.4 kN/m 
 
The u.d.l must be limited to 3.4 kN/m. 



 A composite beam is one which is constructed
from a combination of materials. Since the
bending theory only holds good when a constant
value of Young’s modulus applies across a
section, it cannot be used directly to solve
composite-beam problems when two different
materials, and therefore different values of E, are
present. The method of solution in such as case
is to replace one of the materials by an equivalent
section of the other.
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Equilibrium Conditions 
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Force on an elemental area of timber, dFt =   t b dy  =  Et. y/R  b dy    (  E  x   strain   x  
area) 
 
Force on an elemental area (b dy) of steel, dFs  =    s b dy  = b  Es  y/R   dy     
 
d Ft =  Et/Es (Es  y/R  b dy)    =  Et/Es b (Es  y/R  dy) 
 
This is equivalent to a steel section of width  (b Et/Es) 
 
 
 
 
 d                     
                                                                Et/Es b 
 
 
 
 b 
                          Equivalent steel section of the given composite beam 
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Es/Et   is called modular ratio. 



Example:  Calculate the moment of resistance of the cross section and maximum stress 
in timber and steel.  The allowable stress in steel is 150 N/mm2 

 
 1  1         Steel 
 
 
        Timber 
 
 N A 8 cm 
  
 
 
 1 s    steel  
 Es=  210,000 N/mm2 

  Et =  14,000 N/mm2 

 6  

 



Equivalent Steel Section 
 
 1 
 
 
                     
 d              8 cm                                      b  =  (4,000 x 6)/210000 
                                                                                =  0.4 cm 
 
  
 
 b 
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  =  261.06 cm4 

Allowable stress in steel =  150 N/mm2   

M
I

y
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 MR  =  150  N/mm2  x  261.06 x 104 mm3 

                        5 x 10 mm 

 

=  7.83  x  106    N mm 

 



Stress in steel  =  150  N/mm2 

 

Stress in timber: 

 
 t

t

s

sE E
     and      t s

t

s

E
E

  

 
 =  150  x  14,000/210,000  =  10 N/mm2 

Maximum stress in timber in the given composite beam  =  10  x  4/5  =  8 N/mm2 
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