

- Extremely common structural element
- In buildings majority of of

and majority

Beams

devices for transferring vertical loads horizontally

bending and shear

What Beams have to Do

- Be strong enough for the loads
- Not deflect too much
- Suit the building for size, material, finish, fixing etc

Checking a Beam

what we are trying to check (test)

- stability will not fall over
- adequate strength will not break
- adequate functionality will not deflect too much

what do we need to know

- span how supported
- Ioads on the beam
- material, shape & dimensions of beam
- allowable strength & allowable deflection

Designing a Beam

what we are trying to do

• determine shape & dimensions

what do we need to know

- span how supported
- Ioads on the beam
- material
- allowable strength & allowable deflection

- A beam picks up the load halfway to its neighbours
- Each member also carries its own weight

Tributary Areas (Cont. 1)

- A column generally picks up load from halfway to its neighbours
- It also carries the load that comes from the floors above

- Point loads, from concentrated loads or other beams
- Distributed loads, from anything continuous

10/39

 The loads (& reactions) bend the beam, and try to shear through it

Designing Beams

- in architectural structures, bending moment more important
 - importance increases as span increases
- short span structures with heavy loads, shear dominant
 - e.g. pin connecting engine parts

beams in building designed for bending checked for shear

How we Quantify the Effects

• First,

(loads and reactions)

 Make the beam into a artificially support it)

(cut it out and

, using the conditions of equilibrium

Example 1 - Cantilever Beam Point Load at End

Consider cantilever beam with point load on end

vertical reaction, R = Wand moment reaction $M_R = -WL$

• Use the freebody idea to isolate part of the beam

Add in forces required for equilibrium

Example 1 - Cantilever Beam Point Load at End (cont1)

Take section anywhere at distance, x from end Add in forces, V = W and moment M = -Wx

Shear V = W constant along length (X = 0 -> L)

Bending Moment BM = W.xwhen x = LBM = WLwhen x = 0BM = 0

AIRE Н 4 w /unit length For maximum shear V and bending moment BM Total Load W = w.L $M_R = -WL/2$ $= -wL^{2}/2$ L/2 L/2 $\mathbf{R} = \mathbf{W} = \mathbf{w}\mathbf{L}$ vertical reaction, $\mathbf{R} = \mathbf{W}$ = wL

and moment reaction $M_R = -WL/2 = -wL^2/2$

Example-2 - Cantilever BeamUniformly Distributed Load (cont.)

For distributed V and BM

Take section anywhere at distance, x from end

Add in forces, V = w.x and moment M = -wx.x/2

ShearV = wxwhen x = LV = W = wLwhen x = 0V = 0

 $M = -wx^{2}/2$ $X/2 \times /2$ V = wx

WX

Bending Moment BM = $w.x^2/2$ when x = L when x = 0 (parabolic) BM = $w.x^2/2$ BM = $wL^2/2$ = WL/2BM = $wL^2/2$ = WL/2BM = $wx^2/2$ = WL/2

- The opposite convention is equally valid, but this one is common
- There is no difference in effect between positive and negative shear forces

Shape Office Shear Force Diagram

• Uniformly distributed loads produce triangular diagrams

This convention is almost universally agreed

Positive and Negative Moments

Cantilevers produce negative moments

Cantilevers

Simple beams produce positive moments

Simple beam

Built-in beam

 Built-in & continuous beams have both, with negative over the supports

Where to Draw the Bending Moment Diagram

Positive moments are drawn downwards

Bending Moment Diagram (cont.2)

Shane of the

• We are mainly concerned with the maximum values

- Maximum value

Shape of the

Bending Moment Diagram (cont.3)

- Deflected Shape
- Use the Deflected shape as a guide to where the sagging (+) and hogging (-) moments are

Standard BM Goefficients Simply Supported Beams

Uniformly distr

Central point load Max bending moment = WL/4

Uniformly distributed load Max bending moment = WL/8 or wL²/8 where W = wL

Total load = W

(w per metre length)

Standard Bill Coefficients Gantilevers

End point load Max bending moment = -WL Uniformly Distributed Load Max bending moment = -WL/2 or -wL²/2 where W = wL

Total load = W

(w per metre length)

Samard BH coefficients Simple Beams

SFD & BND Simply Supported Beams

^{34/37}

How to Calculate the Bending Stress

- It depends on the beam cross-section
- We need some particular properties of the section

how big & what shape?

is the section we are using as a beam

What to do with the Bending Stress

- Codes give maximum allowable stresses
- Timber, depending on grade, can take

- Steel can take around
- Use of Codes comes later in the course

Finding Section Properties

we need to find the Section Properties

next lecture