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Stress & Strain: Axial Loading
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• Suitability of a structure or machine may depend on the deformations in 
the structure as well as the stresses induced under loading.  Statics 
analyses alone are not sufficient.

• Considering structures as deformable allows determination of member 
forces and reactions which are statically indeterminate.

• Determination of the stress distribution within a member also requires 
consideration of deformations in the member.

• Chapter 2 is concerned with deformation of a structural member under 
axial loading.  Later chapters will deal with torsional and pure bending 
loads.



Normal Strain
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Stress-Strain Test
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Stress-Strain Diagram:  Ductile 
Materials
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Stress-Strain Diagram:  Brittle Materials  
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Hooke’s Law: Modulus of Elasticity
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• Below the yield stress

Elasticity of Modulus         
or Modulus Youngs


E

E

• Strength is affected by alloying, 
heat treating, and manufacturing 
process but stiffness (Modulus of 
Elasticity) is not.



Elastic vs. Plastic Behavior
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• If the strain disappears when the 
stress is removed, the material is 
said to behave elastically.  

• When the strain does not return 
to zero after the stress is 
removed, the material is said to 
behave plastically.

• The largest stress for which this 
occurs is called the elastic limit.



Fatigue
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• Fatigue properties are shown on 
S-N diagrams.

• When the stress is reduced below 
the endurance limit, fatigue 
failures do not occur for any 
number of cycles.

• A member may fail due to fatigue
at stress levels significantly below 
the ultimate strength if subjected 
to many loading cycles.



Deformations Under Axial Loading
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• From Hooke’s Law:

• From the definition of strain:
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• Equating and solving for the deformation,
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• With variations in loading, cross-section or 
material properties,
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Example 2.01
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Determine the deformation of 
the steel rod shown under the 
given loads.

in. 618.0   in. 07.1

psi1029 6
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SOLUTION:
• Divide the rod into components at 

the load application points.

• Apply a free-body analysis on each 
component to determine the 
internal force

• Evaluate the total of the component 
deflections.
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SOLUTION:

• Divide the rod into three 
components:
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• Apply free-body analysis to each 
component to determine internal forces,
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• Evaluate total deflection,
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Static Indeterminacy
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• Structures for which internal forces and reactions 
cannot be determined from statics alone are said 
to be statically indeterminate.

0 RL 

• Deformations due to actual loads and redundant 
reactions are determined separately and then added 
or superposed.

• Redundant reactions are replaced with 
unknown loads which along with the other 
loads must produce compatible deformations.

• A structure will be statically indeterminate 
whenever it is held by more supports than are 
required to maintain its equilibrium.  



Example 2.04
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Determine the reactions at A and B for the steel 
bar and loading shown, assuming a close fit at 
both supports before the loads are applied.

• Solve for the reaction at A due to applied loads 
and the reaction found at B.

• Require that the displacements due to the loads 
and due to the redundant reaction be compatible, 
i.e., require that their sum be zero.

• Solve for the displacement at B due to the 
redundant reaction at B.

SOLUTION:

• Consider the reaction at B as redundant, release 
the bar from that support, and solve for the 
displacement at B due to the applied loads.
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SOLUTION:
• Solve for the displacement at B due to the applied 

loads with the redundant constraint released, 
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• Solve for the displacement at B due to the redundant 
constraint,
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• Require that the displacements due to the loads and due to 
the redundant reaction be compatible,
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• Find the reaction at A due to the loads and the reaction at B
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Thermal Stresses
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• A temperature change results in a change in length or 
thermal strain.  There is no stress associated with the 
thermal strain unless the elongation is restrained by 
the supports.  
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• Treat the additional support as redundant and apply 
the principle of superposition.
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• The thermal deformation and the deformation from 
the redundant support must be compatible.
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Poisson’s Ratio
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• For a slender bar subjected to axial loading:
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• The elongation in the x-direction is 
accompanied by a contraction in the other 
directions.  Assuming that the material is 
isotropic (no directional dependence),
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• Poisson’s ratio is defined as
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Generalized Hooke’s Law
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• For an element subjected to multi-axial loading, 
the normal strain components resulting from the 
stress components may be determined from the 
principle of superposition.  This requires:

1) strain is linearly related to stress
2) deformations are small
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• With these restrictions:



Dilatation: Bulk Modulus
• Relative to the unstressed state, the change in volume is
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• For element subjected to uniform hydrostatic pressure,
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• Subjected to uniform pressure, dilatation must be 
negative, therefore
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Shearing Strain
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• A cubic element subjected to a shear stress will 
deform into a rhomboid.  The corresponding shear
strain is quantified in terms of the change in angle 
between the sides,

 xyxy f  

• A plot of shear stress vs. shear strain is similar the 
previous plots of normal stress vs. normal strain 
except that the strength values are approximately 
half.  For small strains, 

zxzxyzyzxyxy GGG  

where G is the modulus of rigidity or shear modulus.



Example 2.10
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A rectangular block of material with 
modulus of rigidity G = 90 ksi is 
bonded to two rigid horizontal plates.  
The lower plate is fixed, while the 
upper plate is subjected to a horizontal 
force P.  Knowing that the upper plate 
moves through 0.04 in. under the action 
of the force, determine a) the average 
shearing strain in the material, and b) 
the force P exerted on the plate.

SOLUTION:

• Determine the average angular 
deformation or shearing strain of 
the block.

• Use the definition of shearing stress to 
find the force P.

• Apply Hooke’s law for shearing stress 
and strain to find the corresponding 
shearing stress.
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• Determine the average angular deformation 
or shearing strain of the block.

rad020.0
in.2

in.04.0tan  xyxyxy 

• Apply Hooke’s law for shearing stress and 
strain to find the corresponding shearing 
stress.

   psi1800rad020.0psi1090 3  xyxy G

• Use the definition of shearing stress to find 
the force P.

    lb1036in.5.2in.8psi1800 3 AP xy

kips0.36P



Relation Among E, , and G
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• An axially loaded slender bar will 
elongate in the axial direction and 
contract in the transverse directions.  

  1
2G
E

• Components of normal and shear strain are 
related,

• If the cubic element is oriented as in the 
bottom figure, it will deform into a 
rhombus. Axial load also results in a shear 
strain.

• An initially cubic element oriented as in 
top figure will deform into a rectangular 
parallelepiped.  The axial load produces a 
normal strain.



Composite Materials
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• Fiber-reinforced composite materials are formed 
from lamina of fibers of graphite, glass, or 
polymers embedded in a resin matrix.
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• Normal stresses and strains are related by Hooke’s 
Law but with directionally dependent moduli of 
elasticity, 

x

z
xz

x

y
xy 





 

• Transverse contractions are related by directionally 
dependent values of Poisson’s ratio, e.g.,

• Materials with directionally dependent mechanical 
properties are anisotropic.



Saint-Venant’s Principle
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• Loads transmitted through rigid 
plates result in uniform distribution 
of stress and strain.

• Saint-Venant’s Principle:
Stress distribution may be assumed 
independent of the mode of load 
application except in the immediate 
vicinity of load application points.

• Stress and strain distributions 
become uniform at a relatively short 
distance from the load application 
points.

• Concentrated loads result in large 
stresses in the vicinity of the load 
application point.



Stress Concentration: Hole
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Discontinuities of cross section may result in 
high localized or concentrated stresses. ave

max
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Stress Concentration: Fillet



Elastoplastic Materials
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• Previous analyses based on assumption of 
linear stress-strain relationship, i.e., 
stresses below the yield stress

• Assumption is good for brittle material 
which rupture without yielding

• If the yield stress of ductile materials is 
exceeded, then plastic deformations occur

• Analysis of plastic deformations is 
simplified by assuming an idealized 
elastoplastic material

• Deformations of an elastoplastic material 
are divided into elastic and plastic ranges

• Permanent deformations result from 
loading beyond the yield stress



Plastic Deformations
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• Elastic deformation while maximum 
stress is less than yield stressK

AAP ave
max 

• Maximum stress is equal to the yield 
stress at the maximum elastic 
loadingK

AP Y
Y




• At loadings above the maximum 
elastic load, a region of plastic 
deformations develop near the hole

• As the loading increases, the plastic 
region expands until the section is at 
a uniform stress equal to the yield 
stress
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Residual Stresses
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• When a single structural element is loaded uniformly 
beyond its yield stress and then unloaded, it is permanently 
deformed but all stresses disappear.  This is not the general 
result.

• Residual stresses also result from the uneven heating or 
cooling of structures or structural elements

• Residual stresses will remain in a structure after 
loading and unloading if

- only part of the structure undergoes plastic 
deformation

- different parts of the structure undergo different 
plastic deformations


