Ferrous metals: carbon-, alloy-, stainless-, tool-and-die steels

Non-ferrous metals: aluminum, magnesium, copper, nickel, titanium, superalloys, refractory metals, beryllium, zirconium, low-melting alloys, gold, silver, platinum, ...

**Plastics**: thermoplastics (acrylic, nylon, polyethylene, ABS,...) thermosets (epoxies, Polymides, Phenolics, ...) elastomers (rubbers, silicones, polyurethanes, ...)

Ceramics, Glasses, Graphite, Diamond, Cubic Boron Nitride

**Composites**: reinforced plastics, metal-, ceramic matrix composites

Nanomaterials, shape-memory alloys, superconductors, ...

# Mechanical properties of materials

Strength, Toughness, Hardness, Ductility, Elasticity, Fatigue and Creep

# **Physical properties**

Density, Specific heat, Melting and boiling point, Thermal expansion and conductivity, Electrical and magnetic properties

Chemical properties

Oxidation, Corrosion, Flammability, Toxicity, ...

## **Mechanical properties: Stress analysis**

stress =  $\sigma$  = Force/Area

Why do we need stress/strain (not just force, elongation)?







Tensile, compressive and shear stresses

Stresses in an infinitesimal element of a beam

#### **Stress Analysis: Principal directions in 2D case**



$$\sigma = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\phi + \tau_{xy} \sin 2\phi$$

$$\frac{d\sigma}{d\phi} = 0 \implies \tan 2\phi = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

- principal directions are orthogonal to each other

- 0 shear stress along PDs

### Stress Analysis: Principal shear stress in 2D case



$$\tau = \frac{\sigma_y - \sigma_x}{2} \sin 2\phi + \tau_{xy} \cos 2\phi$$

$$\frac{d\tau}{d\phi} = 0 \implies \tan 2\phi = \frac{\sigma_x - \sigma_y}{2\tau_{xy}}$$

# Failure in Tension, Young's modulus and Tensile strength



Engineering stress =  $\sigma = P/A_{o}$ 

Engineering strain =  $e = (L - L_o)/L_o = \delta/L_o$ 

## Failure in Tension, Young's modulus and Tensile strength..



#### Failure in Tension, Young's modulus and Tensile strength...



In the linear elastic range: *Hooke's law*:  $\sigma = E e$  or,  $E = \sigma/e$ 

E: Young's modulus

# Elastic recovery after plastic deformation



Engg stress and strain are "gross" measures:

 $\sigma = F/A \Longrightarrow \sigma$  is the average stress  $\neq$  local stress

 $e = \delta/L_o \Longrightarrow e$  is average strain



Final

Necking

Fracture

Measures how much the material can be stretched before fracture

Ductility = 
$$100 \text{ x} (L_f - L_o)/L_o$$

High ductility: platinum, steel, copper Good ductility: aluminum Low ductility (brittle): chalk, glass, graphite

- Walkman headphone wires: Al or Cu?

#### Hardness

## resistance to plastic deformation by indentation

| Shape of indentation |                                             |                                 |            |                              |                                                 |  |
|----------------------|---------------------------------------------|---------------------------------|------------|------------------------------|-------------------------------------------------|--|
| Test                 | Indenter                                    | Side view                       | Top view   | Load, P                      | Hardness number                                 |  |
| Brinell              | 10-mm steel<br>or tungsten<br>carbide ball  |                                 | O<br>→ d ← | 500 kg<br>1500 kg<br>3000 kg | $HB = \frac{2P}{(\pi D)(D - \sqrt{D^2 - d^2})}$ |  |
| Vickers              | Diamond pyramid                             |                                 | LX<br>XX   | 1–120 kg                     | $HV = \frac{1.854P}{L^2}$                       |  |
| Knoop                | –<br>Diamond pyramid                        | L/b = 7.11<br>b/t = 4.00        |            | 25 g–5 kg                    | $HK = \frac{14.2P}{L^2}$                        |  |
| A<br>C<br>D          | Diamond cone                                | 120°<br>+<br>t = mm             | 0          | 60 kg<br>150 kg<br>100 kg    | HRA   HRC   HRD $   = 100 - 500t $              |  |
| B<br>F<br>G          | $\frac{1}{16}$ - in. diameter<br>steel ball | $\underbrace{\bullet}_{t = mm}$ | 0          | 100 kg<br>60 kg<br>150 kg    | HRB   HRF   HRG $   = 130 - 500t $              |  |
| E                    | $\frac{1}{8}$ - in. diameter steel ball     |                                 |            | 100 kg                       | HRE                                             |  |

#### Shear stress and Strain: the torsion test



Angle of twist:  $\theta = TL/GJ$ Shear stress:  $\tau = Tr/J$ Maximum shear stress  $= \tau_{max} = TR/J$ Shear strain  $= \gamma = r\theta/L$ 

 $\tau = \mathbf{G} \gamma$ 

T = torque, J = polar moment of inertia  $J = \int r^2 dA$ Cylindrical shell:  $J = \pi (D^4 - d^4)/32$ 

G: Modulus of rigidity

# [approximate relation between shear and tensile strengths]

Ultimate Tensile Strength =  $S_u$  Ultimate Shear Strength =  $S_{su}$ Tensile Yield Strength =  $S_{vp}$  Shear yield point =  $S_{syp}$ 

| Material                    | Tensile-Relation                            | Yield-Relation                                   |
|-----------------------------|---------------------------------------------|--------------------------------------------------|
| Wrought Steel & alloy steel | S <sub>su</sub> ≈ 0.75 x S <sub>u</sub>     | $S_{syp}$ = Approx 0,58 x $S_{yp}$               |
| Ductile Iron                | S <sub>su</sub> ≈ 0.90 x S <sub>u</sub>     | S <sub>syp</sub> = Approx 0,75 x S <sub>yp</sub> |
| Cast Iron                   | S <sub>su</sub> ≈1.3 x S <sub>u</sub>       | -                                                |
| Copper & alloys             | S <sub>su</sub> ≈[0.6-0.9] x S <sub>u</sub> | -                                                |
| Aluminum & alloys           | S <sub>su</sub> ≈ 0.65 xS <sub>u</sub>      | S <sub>syp</sub> = Approx 0,55 x S <sub>yp</sub> |

References: Machine design Theory and Practice .A.D.Deutschman, W.A Michels & C.E. Wilson.. MacMillan Publishing 1975.

### Fracture/failure of a material subjected cyclic stresses



S-N curve for compressive loading

## **Failure under impact**

Application: Drop forging

## Testing for Impact Strength



- Metals microstructure: crystal-grains
- Under plastic strain, grains slipping along boundaries
- Locking up of grains => increase in strength
- We can see this in the true-stress-strain curve also

Applications:

- Cold rolling, forging: part is stronger than casting

### **Residual stresses**

Internal stresses remaining in material after it is processed

Causes:

- Forging, drawing, ...: removal of external forces
- Casting: varying rate of solidification, thermal contraction

Problem: warping when machined, creep



Releasing residual stresses: annealing

| Property                                                            | Application (e.g.)       |  |
|---------------------------------------------------------------------|--------------------------|--|
| Density, $\rho = mass/volume$                                       | Drop forging, hammering  |  |
| Specific heat                                                       | Coolant in machining     |  |
| Thermal conductivity                                                | Cutting titanium         |  |
| Coeff of linear thermal expansion, $\alpha = \Delta L/(L \Delta T)$ | Compensation in Casting, |  |
| Melting point                                                       | Brazing, Casting,        |  |
| Electrical conductivity                                             | EDM, ECM, Plating        |  |
| Magnetic properties                                                 | Magnetic chucking        |  |

. . .

Materials have different physical, chemical, electrical properties

Knowledge of materials' properties is required to

Select appropriate material for design requirement Select appropriate manufacturing process Optimize processing conditions for economic manufacturing