Objectives

- 1. Define stress & strain.
- 2. Utilize Hooke's Law to calculate unknown stresses and strains.
- 3. Determine material parameters from a stress-strain curve.
- 4. Recognize elastic and plastic components of deformation in a material.
- 5. Identify the regions of behavior on a stress-strain diagram.

Stress

Intensity of Force Stress = ____/

Types of Stress

Normal : load perpendicular to area

Types of Stress

a) Normalb) Shear : load parallel to area

Types of Stress

- a) Normal
- b) Shear
- c) Hydrostatic (uniform pressure)

Types of Strain

Normal : deformation in the the direction of length

Longitudinal Strain

e = u / I

Transverse Strain

$$e = v / I$$

Transverse Strain

Materials tend to expand/contract in the directions perpendicular to the load application.

Poisson's Ratio

Why Poisson's Ratio ?

Poissons Ratio Values

- v = 0.5 constant volume
- v = 0.3 good guess for most materials

Types of Strain

Normal

Shear : deformation normal to length

Types of Strain

Normal Shear Dilatational (volume change)

Dilatation (volume strain) $\Delta = \frac{\Delta V}{V}$

Relating Stress and Strain

Called a "Constitutive Model"

Simple Linear Model: "Hooke's Law"

Relating Stress and Strain Normal

S = E e

Stress = Young's modulus x strain

Relating Stress and Strain Shear

Hooke's Law

 $\tau = G \gamma$

 $\tau = \text{shear stress}$

G = shear modulus

 γ = shear strain

Shear Modulus

G = E / [2(1+v)]

Relating Stress and Strain Dilatational (hydrostatic)

Hooke's Law $P = K \Delta$ K = bulkmodulus $K = E/3(1-2\nu)$ $\Delta = \Delta V/Vo$

Real Material Behavior

-Hookean to a limiting strain -Proportional limit : Deviation from linear -After PL

> *Linear *Flat *Non linear

Strain

Callister, Materials Science & Engineering

What is Elastic Deformation?

Real Material Behavior *Recoverable strain (elastic)

*Nonrecoverable strain (plastic)

Unload/Reload

Callister, Materials Science & Engineering

Yield Strength from S-e Curve

Everything Together

Creep Test Viscoelasticity

Deformation Types

Name	Math Model	Time Dependency	Туре
Elastic	Linear/Nonlinear	None	Recoverable
Plastic	Linear/Nonlinear	None	Nonrecoverable
Viscoelastic	Linear/Nonlinear	Strong	Recoverable
Viscoplastic	Nonlinear	Strong	Nonrecoverable

Representative Modulii

Material	Modulus (psi)	
Aluminum	10x10^6	
Steel	30x10^6	
Polycarbonate	300 x 10^3	