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PURE BENDING 

Pure Bending:  Prismatic members 

subjected to equal and opposite couples 

acting in the same longitudinal plane 



OTHER LOADING TYPES 

• Principle of Superposition:  The normal 

stress due to pure bending may be 

combined with the normal stress due to 

axial loading and shear stress due to 

shear loading to find the complete state 

of stress. 

• Eccentric Loading:  Axial loading which 

does not pass through section centroid 

produces internal forces equivalent to an 

axial force and a couple 

• Transverse Loading:  Concentrated or 

distributed transverse load produces 

internal forces equivalent to a shear 

force and a couple 



SYMMETRIC MEMBER IN PURE BENDING 
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• These requirements may be applied to the sums 

of the components and moments of the statically 

indeterminate elementary internal forces. 

• Internal forces in any cross section are equivalent 

to a couple.  The moment of the couple is the 

section bending moment. 

• From statics, a couple M consists of two equal 

and opposite forces. 

• The sum of the components of the forces in any 

direction is zero. 

• The moment is the same about any axis 

perpendicular to the plane of the couple and 

zero about any axis contained in the plane. 



BENDING DEFORMATIONS 

Beam with a plane of symmetry in pure 

bending: 

• member remains symmetric 

• bends uniformly to form a circular arc 

• cross-sectional plane passes through arc center 

and remains planar 

• length of top decreases and length of bottom 

increases 

• a neutral surface must exist that is parallel to the 

upper and lower surfaces and for which the length 

does not change 

• stresses and strains are negative (compressive) 

above the neutral plane and positive (tension) 

below it 



STRAIN DUE TO BENDING 

Consider a beam segment of length L. 

After deformation, the length of the neutral 

surface remains L.  At other sections, 
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STRESS DUE TO BENDING 

• For a linearly elastic material, 
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First moment with respect to neutral 

plane is zero.  Therefore, the neutral 

surface must pass through the 

section centroid. 

• For static equilibrium, 
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BEAM SECTION PROPERTIES 

• The maximum normal stress due to bending, 

modulussection 

inertia ofmoment section  
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A beam section with a larger section modulus 

will have a lower maximum stress 

• Consider a rectangular beam cross section, 
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Between two beams with the same cross 

sectional area, the beam with the greater depth 

will be more effective in resisting bending. 

• Structural steel beams are designed to have a 

large section modulus. 



PROPERTIES OF AMERICAN STANDARD SHAPES 



DEFORMATIONS IN A TRANSVERSE CROSS SECTION 

• Deformation due to bending moment M is 

quantified by the curvature of the neutral surface 
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• Although cross sectional planes remain planar 

when subjected to bending moments, in-plane 

deformations are nonzero, 
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SAMPLE PROBLEM 4.2 

A cast-iron machine part is acted upon 

by a 3 kN-m couple.  Knowing E = 165 

GPa and neglecting the effects of 

fillets, determine (a) the maximum 

tensile and compressive stresses, (b) 

the radius of curvature. 

SOLUTION: 

• Based on the cross section geometry, 

calculate the location of the section 

centroid and moment of inertia. 
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• Apply the elastic flexural formula to 

find the maximum tensile and 

compressive stresses. 
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SAMPLE PROBLEM 4.2 
SOLUTION: 

Based on the cross section geometry, calculate 

the location of the section centroid and 

moment of inertia. 
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SAMPLE PROBLEM 4.2 

• Apply the elastic flexural formula to find the 

maximum tensile and compressive stresses. 
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BENDING OF MEMBERS MADE OF SEVERAL 

MATERIALS 
• Consider a composite beam formed from 

two materials with E1 and E2. 

• Normal strain varies linearly. 
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EXAMPLE 4.03 

Bar is made from bonded pieces of 

steel (Es = 29x106 psi) and brass 

(Eb = 15x106 psi).  Determine the 

maximum stress in the steel and 

brass when a moment of 40 kip*in 

is applied. 

SOLUTION: 

• Transform the bar to an equivalent cross 

section made entirely of brass 

• Evaluate the cross sectional properties of 

the transformed section 

• Calculate the maximum stress in the 

transformed section.  This is the correct 

maximum stress for the brass pieces of 

the bar. 

• Determine the maximum stress in the 

steel portion of the bar by multiplying 

the maximum stress for the transformed 

section by the ratio of the moduli of 

elasticity. 



EXAMPLE 4.03 

• Evaluate the transformed cross sectional properties 
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REINFORCED CONCRETE BEAMS 

• Concrete beams subjected to bending moments are 

reinforced by steel rods. 

• In the transformed section, the cross sectional area 

of the steel, As, is replaced by the equivalent area 

nAs where  n = Es/Ec. 

• To determine the location of the neutral axis, 
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• The steel rods carry the entire tensile load below 

the neutral surface.  The upper part of the 

concrete beam carries the compressive load. 



SAMPLE PROBLEM 4.4 

A concrete floor slab is reinforced with 

5/8-in-diameter steel rods.  The modulus 

of elasticity is 29x106psi for steel and 

3.6x106psi for concrete.  With an applied 

bending moment of 40 kip*in for 1-ft 

width of the slab, determine the maximum 

stress in the concrete and steel. 

SOLUTION: 

• Transform to a section made entirely 

of concrete. 

• Evaluate geometric properties of 

transformed section. 

• Calculate the maximum stresses 

in the concrete and steel. 



SAMPLE PROBLEM 4.4 
SOLUTION: 

• Transform to a section made entirely of concrete. 
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• Evaluate the geometric properties of the 

transformed section. 
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STRESS CONCENTRATIONS 

Stress concentrations may occur: 

• in the vicinity of points where the 

loads are applied 

I

Mc
Km 

• in the vicinity of abrupt changes 

in cross section 



PLASTIC DEFORMATIONS 

• For any member subjected to pure bending 
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• If the member is made of a linearly elastic material, 

the neutral axis passes through the section centroid 
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• For a material with a nonlinear stress-strain curve, 

the neutral axis location is found by satisfying 
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• For a member with vertical and horizontal planes of 

symmetry and a material with the same tensile and 

compressive stress-strain relationship, the neutral 

axis is located at the section centroid and the stress-

strain relationship may be used to map the strain 

distribution from the stress distribution. 



PLASTIC DEFORMATIONS 

• When the maximum stress is equal to the ultimate 

strength of the material, failure occurs and the 

corresponding moment MU is referred to as the 

ultimate bending moment. 

• The modulus of rupture in bending, RB, is found 

from an experimentally determined value of MU  

and a fictitious linear stress distribution. 
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• RB may be used to determine MU of any 

member made of the same material and with the 

same cross sectional shape but different 

dimensions. 



MEMBERS MADE OF AN ELASTOPLASTIC MATERIAL 

• Rectangular beam made of an elastoplastic material 

moment elastic maximum  



YYYm

mYx

c

I
M

I

Mc





• If the moment is increased beyond the maximum 

elastic moment, plastic zones develop around an 

elastic core. 
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PLASTIC DEFORMATIONS OF MEMBERS WITH A  

SINGLE PLANE OF SYMMETRY 

• Fully plastic deformation of a beam with only a 

vertical plane of symmetry. 

• Resultants R1 and R2 of the elementary 

compressive and tensile forces form a couple. 
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The neutral axis divides the section into equal 

areas. 

• The plastic moment for the member, 
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• The neutral axis cannot be assumed to pass 

through the section centroid. 



RESIDUAL STRESSES 

• Plastic zones develop in a member made of an 

elastoplastic material if the bending moment is 

large enough. 

• Since the linear relation between normal stress and 

strain applies at all points during the unloading 

phase, it may be handled by assuming the member 

to be fully elastic. 

• Residual stresses are obtained by applying the 

principle of superposition to combine the stresses 

due to loading with a moment M (elastoplastic 

deformation) and unloading with a moment -M 

(elastic deformation). 

• The final value of stress at a point will not, in 

general, be zero. 



EXAMPLE 4.05, 4.06 

A member of uniform rectangular cross section is 

subjected to a bending moment M = 36.8 kN-m. 

The member is made of an elastoplastic material 

with a yield strength of 240 MPa and a modulus 

of elasticity of 200 GPa.   

Determine (a) the thickness of the elastic core, (b) 

the radius of curvature of the neutral surface.   

After the loading has been reduced back to zero, 

determine (c) the distribution of residual stresses, 

(d) radius of curvature. 



EXAMPLE 4.05, 4.06 
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EXAMPLE 4.05, 4.06 

• M = 36.8 kN-m 
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ECCENTRIC AXIAL LOADING IN A PLANE OF 

SYMMETRY 
• Stress due to eccentric loading found by 

superposing the uniform stress due to a centric 

load and linear stress distribution due a pure 

bending moment 
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• Validity requires stresses below proportional 

limit, deformations have negligible effect on 

geometry, and stresses not evaluated near points 

of load application. 



EXAMPLE 4.07 

An open-link chain is obtained by 

bending low-carbon steel rods into the 

shape shown.  For 160 lb load, determine 

(a) maximum tensile and compressive 

stresses, (b) distance between section 

centroid and neutral axis 

SOLUTION: 

• Find the equivalent centric load and 

bending moment 

• Superpose the uniform stress due to 

the centric load and the linear stress 

due to the bending moment. 

• Evaluate the maximum tensile and 

compressive stresses at the inner 

and outer edges, respectively, of the 

superposed stress distribution. 

• Find the neutral axis by determining 

the location where the normal stress 

is zero. 



EXAMPLE 4.07 

• Equivalent centric load 

and bending moment 
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EXAMPLE 4.07 

• Maximum tensile and compressive 

stresses 
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SAMPLE PROBLEM 4.8 

The largest allowable stresses for the cast 

iron link are 30 MPa in tension and 120 

MPa in compression.  Determine the largest 

force P which can be applied to the link. 

SOLUTION: 

• Determine an equivalent centric load and 

bending moment. 

• Evaluate the critical loads for the allowable 

tensile and compressive stresses. 

• The largest allowable load is the smallest 

of the two critical loads. 

From Sample Problem 2.4, 
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• Superpose the stress due to a centric 

load and the stress due to bending. 



SAMPLE PROBLEM 4.8 

• Determine an equivalent centric and bending loads. 
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UNSYMMETRIC BENDING 

• Analysis of pure bending has been limited 

to members subjected to bending couples 

acting in a plane of symmetry. 

• Will now consider situations in which the 

bending couples do not act in a plane of 

symmetry. 

• In general, the neutral axis of the section will 

not coincide with the axis of the couple. 

• Cannot assume that the member will bend 

in the plane of the couples. 

• The neutral axis of the cross section 

coincides with the axis of the couple 

• Members remain symmetric and bend in 

the plane of symmetry. 



UNSYMMETRIC BENDING 

Wish to determine the conditions under 

which the neutral axis of a cross section 

of arbitrary shape coincides with the 

axis of the couple as shown. 

•    

 

 couple vector must be directed along 

a principal centroidal axis 
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• The resultant force and moment 

from the distribution of 

elementary forces in the section 

must satisfy 
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•    

 

 neutral axis passes through centroid 
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•   

 

   defines stress distribution 
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UNSYMMETRIC BENDING 

Superposition is applied to determine stresses in 

the most general case of unsymmetric bending. 

• Resolve the couple vector into components along 

the principle centroidal axes. 

 sincos MMMM yz 

• Superpose the component stress distributions 
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• Along the neutral axis, 
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EXAMPLE 4.08 

A 1600 lb-in couple is applied to a 

rectangular wooden beam in a plane 

forming an angle of 30 deg. with the 

vertical.  Determine (a) the maximum 

stress in the beam, (b) the angle that the 

neutral axis forms with the horizontal 

plane. 

SOLUTION: 

• Resolve the couple vector into 

components along the principle 

centroidal axes and calculate the 

corresponding maximum stresses. 

 sincos MMMM yz 

• Combine the stresses from the 

component stress distributions. 
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• Determine the angle of the neutral 

axis. 
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EXAMPLE 4.08 

• Resolve the couple vector into components and calculate 

the corresponding maximum stresses. 
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• The largest tensile stress due to the combined loading 

occurs at A. 

5.6096.45221max   psi1062max 



EXAMPLE 4.08 

• Determine the angle of the neutral axis. 
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GENERAL CASE OF ECCENTRIC AXIAL LOADING 

• Consider a straight member subject to equal 

and opposite eccentric forces. 

• The eccentric force is equivalent to the system 

of a centric force and two couples. 
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• By the principle of superposition, the 

combined stress distribution is 
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• If the neutral axis lies on the section, it may 

be found from 
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