DEPARTMENT OF MECHANICAL ENGINEERING

Fluid Mechanics(QUESTION BANK)

- What is continuum? Is air a continuum? Does it always remain so?
- What do understand by fluid mechanics?
- What is difference between cohesion and adhesion?
- Differentiate between Ideal and Real fluid.
- State the Newton's law of viscosity. Explain and give examples of Newtonian fluid, psuedoplastic, dilatants, ideal plastic and thyxotropic.
- Classify the following fluids: Water, sugar solution, printer's ink, air, glycerine, and molten metal.
- A U-tube is made up of capillaries of bores 1.2 mm and 2.4 mm respectively. The tube is held vertical and partially filled with ideal liquid of surface tension $0.06 \mathrm{~N} / \mathrm{m}$. If the estimated difference in the level of two menisci is 15 mm , determine the mass density of the fluid.
- Define Metacentric height. Explain experimental and analytical methods to determine metacentric height. Explain its importance in case of floating and submerged bodies.
- Find the density of a metallic body which floats at the interface of mercury ofsp.gravity 13.6 and water such that 40% of its volume is submerged in mercury and 60% in water.

A tank contains water upto a height of 0.5 in above the base.AnImmiscible liquid of sp. gravity 0.8 is filled on the top of water upto 1 m height. Calculate
(i) total pressure on one side of the tank
(ii) the position of centre of pressure for one side of the tank which is 2 m wide.
(iii)A vertical dock gate separates two water reservoirs of depth H_{1} and H_{2}.

- Find the resultant pressure exerted on the gate and the point of application if $\mathrm{H}_{1}: \mathrm{H}_{2}=2$. To what position does this line tend as the depth of water in both sides becomesequal.
- Find the density of a metallic body which floats at the interface of mercury ofsp.gravity 12.6 and water such that 40% of its volume is submerged in mercury \& 60% in water.
- A wooden cylinder (sp.gravity0.6) of circular cross section having length L anddiameter d floats in water. Find the maximum permissible l / d ratio so that thecylinder may float in stable equilibrium with its vertical.
- Explain Relative equilibrium.
- Derive the hydrostatic equation from first principles.
- Discuss various types of flows.
- What is the difference between streak, stream and path lines?
- Distinguish between laminar and turbulent flow.
- Define vorticity and circulation.
- What is stream and potential function?
- What is flow net? Explain its uses.
- Derive the continuity equation in polar co-ordinates.Also list the assumptions made.
- Discuss the two approaches to study the motion of fluid particles.
- The velocity along a streamline passing through the origin is given by $v=2\left(x^{2}+y^{2}\right) 1 / 2$. What is the velocity and acceleration at a point $(4,3)$
- Explain various types of acceleration.
- Derive the equation for stream function in a fluid flow.
- Derive the equation for potential function in fluid flow
- Derive Bernoulli's theorem and list out the various assumptions made.
- State the basic principles behind theory of venturimeter and orifice meter.
- Define impulse momentum correction factors.
- Establish a relation for rate of flow through venturimeter.
- In a 100 mm diameter horizontal pipe, a venturimeter of 0.5 contraction ratio hasbeen filled. The head of water on the meter when there is no flow is 3 m (gauge).
- Find the rate of flow for which the throat pressure will be 2 m of water absolute.
- Dischargeco-eff of mater is 0.97 .
- Explain how we can determine the discharge through a pipe usingOrificemeter.
- A horizontal venturimeter with inlet and throat diameter 300 mm and 100 mmrespectively is used to measure flow of water. The pressure intensity at the inlet is $130 \mathrm{kN} / \mathrm{m}^{2}$, while the vacuumpressure head at the throat is 350 mm of mercury.
- Assuming a 3 percent of head lost in between inlet and throat, find:
- Coeff of discharge for the venturimeter.
- Rate of flow
- Derive Euler's equation. What are the assumptions made.
- Explain how we can determine the discharge through a pipe using Orifice meter
- A venturimeter has its axis vertical the inlet and throat diameters are 150 mm and75 mm resp. The throat is 225 mm above inlet and venturimeter constant is equal to 0.96 . Petrol of sp.gr 0.78 flows through the meter at a rate of $0.029 \mathrm{~m} 3 / \mathrm{s}$. Find thepressure difference between inlet and throat.
- State Bernoulli's theorem \& mention the assumptions involved in it.
- Discuss the various equations of compressible fluid flow.
- Define stagnation point.
- Derive an expression for stagnation pressure, stagnation density, and stagnationtemperature.
- What is Mach number? Discuss sub-sonic and supersonic flow.
- Explain the concept of stagnation properties.
- Explain the concept of elastic waves due to disturbances in fluid.
- Air flows with a velocity of $360 \mathrm{~m} / \mathrm{s}$ through a duct. At a particular section of theduct, the static pressure and temperature are 75 Kpa and 300 K . Assuming the flowto be reversible adiabatic, estimate the:
- Mach number at the given section
- (ii)Mach number, temp, and velocity at another section where static pressure is
- 125 Kра.
- Describe Reynold's experiment to demonstrate the laminar and turbulent fluid flow.
- How is the type of flow related to Reynolds Number?
- A fluid passing viscosity μ and density ρ is flowing through a right circular pipe ofradius R, show that velocity in axial direction at any radius r is given by $-u=1 / 4 \mu\left[(d p / d x)\left(R^{2}-r^{2}\right)\right]$ Wheredp/dx is the pressure gradient and μ is the dynamic viscosity. Also find theratio of average velocity to maximum velocity.
- For viscous flow through a circular pipe,prove that kinetic energy correction factor isequal to 2.
- If a liquid of viscosity 0.9 is filled between two horizontal plates 10 mm apart.If the upper plate is moving at $1 \mathrm{~m} / \mathrm{s}$ w.r.t lower plate which is stationary. Pressuredifference between two sections 60 m apart is $60 \mathrm{KN} / \mathrm{m} 2$.Determinethe velocity distribution.
(i)the discharge per unit width
(ii)shear stress on the upper plate
- A shaft of diameter 0.35 m rotates at 200 rpm inside a sleeve 100 m long. Thedynamic viscosity of lubricating oil in the 2 m gap between the sleeve and shaft is 8.Calculate the power lost in bearing.
- Two fixed plates kept 8 cm apart have laminar flow of oil between them with amaximum velocity $1.5 \mathrm{~m} / \mathrm{s}$. Take dynamic viscosity of oil to be $2 \mathrm{Ns} / \mathrm{m} 2$, compute:
(i)the discharge per meter width
(ii)the shear stress at the plates
(iii)The pressure difference between two points 25 m apart.
(iv)velocity at 2 cm from the plate
(v)the velocity gradient at the plates end.
- Derive the equation for power absorbed in footstep and collar bearing.
- Find the power required to rotate a circular disc of diameter 200 mm at 100 rpm ,the circular disc has the clearance of 0.4 mm from the bottom flat plate and theclearance contains oil of viscosity $0.11 \mathrm{Ns} / \mathrm{m} 2$.
- Give a proof of Hagen-Poiseullie equation for fully developed laminar flow in pipeand hence show that the Darcy's friction coefficient is equal to $16 / R e$ where Re isReynolds number
- Write notes on flow regimes and Renolds number.
- Discuss various types of losses in pipes. Also give formulas to measure them.
- What are total energy lines?
- What do you mean by friction coeff for smooth pipes?
- Discuss various types of major losses in pipes?
- Discuss various types of minor losses in pipes \& give formulae to measure them.
- Derive Darcy-Weisbach equation for head loss due to friction in circular pipe.
- A compound pipeline 1650 m long is made up of pipes 450 mm diameter for $900 \mathrm{~m}, 375 \mathrm{~mm}$ for 450 m and 300 mm for 300 m , is required to be replaced by a pipe ofuniform diameter. Find the diameter of new pipe assuming length to remain thesame.
- Derive an expression for the head loss due to sudden enlargement in a pipe flow.
- A 250 mm dia. 3 m long pipe runs between two reservoirs of surface elevations 130 m and 60 m . A 1.5 km long and 300 mm dia. Pipe is laid parallel to the 250 mm dia.Pipe from themidpoint to the lower reservoir. Neglecting all minor losses andassuming a friction factor of 0.02 for both pipes, find the increase in dischargecaused by addition of 300 mm diameter pipe.
- Define the boundary layer and explain fundamental causes of its existence.
- What are coefficient of drag and lift? Show that these are dependent on Reynolds
- Number and characteristic area of a body immersed in a fluid.
- The velocity distribution in the boundary layer of a flat plate is prescribed, By therelation: $u / u_{0}=$ $\sin (\pi y / 28)$ Use momentum integral equation to develop an expression for boundary layerthickness and shear stress.
- A 2 m wide and 5.0 m long plate when towed through water at $20 ® \mathrm{C}$ experience adrag of 30.38 N on both the sides. Determine the velocity of the plate and the lengthover which the boundary layer is laminar.
- A passenger ship of 300 m length and 12 m draft is travelling at $45 \mathrm{~km} / \mathrm{hr}$. Assumingthe ship surface to act as flat plate, determine:
- Total friction drag
- Power required to overcome this resistance. Take $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $\sqrt{ }=1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
- A cylinder whose axis is perpendicular to the stream of air having a velocity of $20 \mathrm{~m} / \mathrm{s}$, rotates at 300 rpm . The cylinder is 2 m in diameter and 10 m long. Find :
(i)the circulation
(ii) the theoretical lift force per unit length
(iii)the position of stagnation points,
(iv)the actual lift, drag and direction of resultant force. Assume $U_{c} / U_{0}=1.57$;
$C_{L}=3.4$ and $C_{D}=0.65$ Where UCrepresents the peripheral velocity due to circulation and for air $\rho=1.24 \mathrm{Kg} / \mathrm{m} 3$.
- Derive Von Karman equation for boundary layer flow.
- Explain the following:
- Momentum integral equation
- Solve momentum integral equation for flow over a flat plate.
- Discuss stream line \& bluff bodies.
- If the velocity distribution is prescribed by $u / u 0=(y / \delta)^{1 / 7}$, Determine -
- Momentum thickness
- Displacement thickness
- Shape factor
- Explain the prandtl's mixing length
- Discuss hydraulically smooth \&rough pipes.
- Water at $30 ® C$ and atmospheric pressure flows through a smooth pipe of 5 cm ID.The flow is fully developed and is at a rate of 2 lit/s. Calculate:
(i)friction factor
(ii)pressure drop over a length of 5 m .
(iii)the thickness of laminar sub-layer.
- A smooth pipe 100 mm in diameter and 1000 m long carries water at the rate of $0.0075 \mathrm{~m}^{3} / \mathrm{s}$. If the kinematic viscosity of water is 0.02 stokes , calculate
- head loss
- wall shearing stress
- centre line velocity
- shear stress and velocity at 40 mm from the centerline
- thickness of laminar sub-layer
- What is velocity defect?
- A pipe 12 cm in diameter and 100 m long conveys water at the rate of $0.075 \mathrm{~m} 3 / \mathrm{s}$. The average height of the surface protusions is 0.012 cm and the coeff of friction is 0.005 . Calculate the loss of head, wall shearing stress, centre line velocity andnominal thickness of laminar sub-layer.
- Derive an expression for the velocity distribution for turbulent flow in smooth pipes
- Find an expression for turbulent flow through rough pipes.

