The Gay-Lussac-Joule Experiments

• Measuring the dependence of the internal energy of a gas on its volume.

• Results show that the internal energy is a function of T only.

• The internal energy does not depend on the volume V.
The GLJ experiment is designed based on the following relationship:
\[
\left(\frac{\partial u}{\partial v} \right)_T \left(\frac{\partial v}{\partial T} \right)_u \left(\frac{\partial T}{\partial u} \right)_v = -1.
\]
\[
\left(\frac{\partial u}{\partial v} \right)_T = -c_v \left(\frac{\partial T}{\partial v} \right)_u,
\]
which indicates that the variation of internal energy could be obtained via measuring the change of temperature with respect to volume under constant internal energy.

The key is: how to keep the internal energy constant during expansion.

Considering \(du = dq - dw \), where \(dq = 0 \) during adiabatic changes.
5.2 The Joule-Thomson Experiment
Theory of the Joule-Thomson Experiment

• In an insulated cylinder: \(dq = 0 \)
• The work done by forcing the gas through the throat (or porous plug) is \(-P_1V_1 \)
• The work done by the system in expansion is \(P_2V_2 \)
• The total work is therefore: \(P_2V_2 - P_1V_1 \)
• The variation in internal energy is
 \[
 u_2 - u_1 = P_2V_2 - P_1V_1
 \]
• Both the P and T of the gas before passing through the throat are kept constant
• The Temperature at the exit is measured at different exiting P values

• The slope of the above curve at any point is called the Joule-Thomson coefficient μ, where $\mu = 0$ is called the inversion point
The Joule-Thomson experiment illustrates that the enthalpy of a gas is independent of pressure.

Theoretical analysis will be shown on chalk board
5.3 Heat Engines and the Carnot Cycle

- A system that receives an input of heat at a high temperature, does mechanical work, and gives off heat at a lower temperature.
• The efficiency of the engine \(\eta \) is equal to the work done by the system divided by the heat absorbed \(Q_2 \).

• According to the first law, \(\Delta u = Q_1 + Q_2 - W \)

• When the engine returns to the initial state after each cycle, \(\Delta u = 0 \), therefore \(Q_1 + Q_2 = W \)

• \(\eta = 1 - \frac{T_1}{T_2} \)

• The efficiency would be 100% if \(T_1 \) could be at absolute zero.
- A Carnor refrigerator is a Carnor engine in reverse
- The relationship $\frac{Q_1}{Q_2} = -\frac{T_1}{T_2}$ still holds.
- The coefficient c is defined as $-\frac{Q_1}{W} = \frac{T_1}{(T_2 - T_1)}$
- c can be much larger than 1.