Thermodynamic Property Relations



Some thermodynamic properties can be measured directly, but many others cannot.
Therefore, it is necessary to develop some relations between these two groups so
that the properties that cannot be measured directly can be evaluated. The
derivations are based on the fact that properties are point functions, and the state of
a simple, compressible system is completely spec-ified by any two independent,
intensive properties.

Some Mathematical Preliminaries

Thermodynamic properties are continuous point functions and have exact
differentials. A property of a single component system may be written as general
mathematical function z = z(x,y). For instance, this function may be the pressure P =
P(T,v). The total differential of z is written as
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Taking the partial derivative of M with respect to y and of N with respect to x yields
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Since properties are continuous point functions and have exact differentials, the

following is true
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The equations that relate the partial derivatives of properties P, v, T, and s of a simple
compressible substance to each other are called the Maxwell relations. They are
obtained from the four Gibbs equations. The first two of the Gibbs equations are
those resulting from the internal energy u and the enthalpy h.

du=Tds—Pdv
dh=Tds+vdP




The second two Gibbs equations result from the definitions of the Helmholtz function
a and the Gibbs function g defined as

a=u-—Ts
da=du—-Tds—sdT
da=-sdT —Pdv

g=h-Ts
dg=dh-Tds—sdT
dg =-sdT +vdP

Setting the second mixed partial derivatives equal for these four functions yields the
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oT

\ ov Js _ os /v

(0T ’61-*)
P

\ P .
( Os ) ( OP )
\ v /), \0T),

( Os ) ( ov J
| 7| A 4
'\CP T CT P

\ OS




Now we develop two more important relations for partial derivatives—the reciprocity
and the cyclic relations. Consider the function z = z(x,y) expressed as x = x(y,2).

The total differential of x is
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Now combine the expressions for dx and dz.
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Rearranging,




Since y and z are independent of each other, the terms in each bracket must be zero.
Thus, we obtain the reciprocity relation that shows that the inverse of a partial
derivative is equal to its reciprocal.
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The second relation is called the cyclic relation.
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Another way to write this last result is
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The Clapeyron Equation

The Clapeyron equation enables us to determine the enthalpy change asso-ciated
with a phase change, hy,, from knowledge of P, v, and T data alone.
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Consider the third Maxwell relation
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During phase change, the pressure is the saturation pressure, which depends on the
temperature only and is independent of the specific volume. Thatis P, = f(T,,).
Therefore, the partial derivative (éP/éT) can be expressed as a total derivative
(dP/dT)sat, which is the slope of the saturation curve on a P-T diagram at a specified
state. This slope is independent of the specific volume, and thus it can be treated as

a constant during the integration of the third Maxwell relation between two saturation
states at the same temperature. For an isothermal liquid-vapor phase-change

process, the integration yields
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During the phase-change process, the pressure also remains constant. Therefore,
from the enthalpy relation

dh = Tdd+vdP
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Now we obtain the Clapeyron equation expressed as
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Example 12-1

Using only P-v-T data, estimate the enthalpy of vaporization of water at 45°C.

The enthalpy of vaporization is given by the Clapeyron equation as
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Using the P-v-T data for water from Table A-4
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The actual value of hg, is 2394.0 kJ/kg. The Clapeyron equation approximation is low
by about 1 percent due to the approximation of the slope of the saturation curve at
45°C.

Clapeyron-Clausius Equation

For liguid-vapor and solid-vapor phase-change processes at low pressures, an
approximation to the Clapeyron equation can be obtained by treating the vapor phase
as an ideal gas and neglecting the specific volume of the saturated liquid or solid
phase compared to that of the vapor phase. At low pressures
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For small temperature intervals, h, can be treated as a constant at some average
value. Then integrating this equation between two saturation states yields
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General Relations for du, dh, ds, C,, and C,
The changes in internal energy, enthalpy, and entropy of a simple, compress-ible
substance can be expressed in terms of pressure, specific volume, tem-perature, and
specific heats alone.
Consider internal energy expressed as a function of T and v.
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Recall the definition of the specific heat at constant volume
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Now let’s see if we can evaluate (éu/év), in terms of P-v-T data only. Consider the
entropy as a function of T and v; that is,

s=5(1,v)

N
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Now substitute ds into the T ds relation for u.
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Comparing these two results for du, we see
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Using the third Maxwell’s relation
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Notice that the derivative (&« /év). Is a function of P-v-T only. Thus the total
differential for u = u(T,Vv) is written as

-
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Do you remember that we agreed that the internal energy of an ideal gas depended
only on temperature? Let’'s evaluate the following partial derivative for an ideal gas.
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For ideal gases

P=RT
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This result helps to show that the internal energy of an ideal gas does not depend
upon specific volume. To completely show that internal energy of an ideal gas is
independent of specific volume, we need to show that the specific heats of ideal
gases are functions of temperature only. We will do this later.

We could also find the following relations for dh and ds where h = h(T,P) and s =
s(T,v) or s =s(T,P) -

dh=C,dT +|v— T(f”’) }fP
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Example

Determine an expression for the entropy change of an ideal gas when temperature

and pressure data are known and the specific heats are constant.

s=s(1,P)
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Assignment
Determine the expression for dh when h = h(T,v).
Specific Heats

For specific heats, we have the following general relations:
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Let C, be the ideal-gas, low-pressure value of the specific heat at constant pressure.
Integrating the above relation for C, along an isothermal (T = constant) path yields

Py o~2
a ~ I PV
C,r—Chy :—TJ(ET,J dP
/P

0

Given the equation of state, we can evaluate the right-nand side and determine the
actual specific heat as C, = C,(T,P).
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Other relations for the specific heats are given below.
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where fis the volume expansivity and « is the isothermal compressibility, defined as
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Example

Determine C, — C, for ideal gases.
_RT

v
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=R

The difference C, — C, is equal to R for ideal gases and to zero for incom-pressible
substances (v = constant).

Example

Show that C, of an ideal gas does not depend upon specific volume.
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Therefore, the specific heat at constant volume of an ideal gas is independent of

specific volume.

RT

P =

V
f’fﬁP) R
\o1'), v
[ A2
o P
-~ 2 :0
\\C’TA ,

oC
()
ov ),

21



The Joule-Thomson Coefficient

The temperature behavior of a fluid during a throttling (h = constant) process is
described by the Joule-Thomson coefficient, defined as

(ST)
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The Joule-Thomson coefficient is a measure of the change in temperature of a

substance with pressure during a constant-enthalpy process, and it can also be
expressed as
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Example For You To Do

Take a moment to determine the Joule-Thomson coefficient for an ideal gas. What is
the enthalpy change of an ideal gas during an isothermal process?

Enthalpy, Internal Energy, and Entropy Changes for Real Gases

The enthalpy, internal energy, and entropy changes of real gases can be determined
accurately by utilizing generalized enthalpy or entropy departure charts to account for
the deviation from the ideal-gas behavior. Considering the enthalpy a function of T
and P, h = h(T,P), we found dh to be

dh=C,dT + |:v - T(?) }iP
cl ),

To integrate this relation to obtain the expression for the enthalpy change of a real
gas, we need the equation of state data, the P-v-T relation, and C, data. Here we
use the generalized compressibility charts and the compressibility factor, Figure A-
15a, to supply the equation of state data. Let’s integrate the dh equation between
two states from T,, P, to T,, P,.
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Since enthalpy is a property and is thus a point function, we can perform the
integration over any convenient path. Let’'s use the path shown below.

Actual
process
path

Alternative
process[]
path

/

s

The path is composed of an isothermal process at T, from P, to P, (P, is low enough
pressure that the gas is an ideal gas or can be taken to be zero), a constant pressure
process at P, from T, to T,, and finally an isothermal process at T, from P, to P,
Using the superscript asterisk (*) to denote the ideal-gas state, the enthalpy change

for the real gas is expressed as

h, —h = (h, =) +(h, —h)) +(h, —h)

24



For process 2* to 2, T, = constant.
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For process 1* to 2*, P, = constant (C, Is the specific heat at the ideal gas state).

" " Lo L
m—h =], (pdT+O=J.T1 C o dT

For process 1 to 1*, T, = constant.
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1 C Plr-1

25



The enthalpy difference (h* - h) is called the enthalpy departure and represents the
variation of the enthalpy of a gas with pressure at a fixed temperature. When we
don’t have the actual P-v-T data for the gas, we can use the compressibility factor to
relate P, v, and T by

Pv=/ZRT

where Z is a function of T and P through the reduced temperature, T, = T/T
reduced pressure, P, = P/P_..

and the
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Noting that

W—h=-[ v—z{fw) dP
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we write the enthalpy departure in terms of the enthalpy departure factor Z, , as
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Z, is given as a function of P, and Ty in Figure A-29, called the enthalpy departure
chart. In Figure A-29 h* has been replaced by h,,.,- The enthalpy change between
two states 1 and 2 is

( E)ldeal - RuTcr (Zh2 o Zh1 )

(h hl)ideal B RTcr (th B Zhl)
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Example 12-6
Propane gas flows steadily through a pipe. The inlet state is 407 K, 5.21 MPa, and

the exit state is 370 K, 4.26 MPa. Determine the heat loss from the propane to the
surroundings per unit mass of propane.

Steady-flow pipe
T3 I5

P 1 + P 2
Propane

Conservation of mass
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Conservation of energy
Ein = Eout

mlhl = Qout + mzhz
Qout = m(hl - hz)

Now, we approximate the enthalpy difference by using the above real gas analysis and
determine the heat transfer per unit mass as

m
= _[(ITE o hl)z‘defﬂ -~ RZ}I (Zh: - Zhl )]

—h

an‘ = 2

1

= (L~ L)+ RL, (2, -2,

Use Tables A-1 and A-2 to obtain properties of propane. From Table A-1, T =370
K, Pe =4.26 MPa. From Table A-2, C,, = 1.6794 kJ/kg-K.

T, 407K P 521MPa
~ =11, P,=-1= =12
T, 370K P, 426MPa

cr cr

T 80K, o PR _426MPa_,
T, 370K P, 426MPa

cr cr

R1
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Figure A-29 yields

Z,, =145 7., =25

Qo = Cp(T, - T.)+ R, (Z, - Z, )

>

If we assumed propane to be an ideal gas

—1.6794 (407 -370)K
kg-K
+0.1885 ?’U _(370K)(2.5— 145)
= (62.14+73.23) E
kg
— l35.37k—J
kg
) kT
Qcmr.m’enf = ('po(z - I}) = 6214%
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The error in assuming propane is ideal is

% Error = qout,real _qout,ideal 100%

qout, real

 13537-6214

135.37
=541%
The internal energy change of a real gas is given as (u = h — Pv)

100%

th, =it = hy =, = (Pv, = By))
= (EA _E)_RH(ZEE —le;)
U, —u; = (}?2 —1?1)— R(ZEE _le)

The entropy change for a real gas at constant temperature is determined as follows.

Let’s assume entropy is expressed interms of T and P as s = s(T,P). Then

s=s(1T,P)
C Y
ds = —£ df—(il) dP
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Now let’'s consider a constant temperature process and determine the entropy
change at constant temperature from zero pressure, where the gas is assumed to be
ideal, to a given pressure where the gas is assumed to be real.
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The direct substitution of the compressibility factor into this equation would do us no
good since the entropy of an ideal-gas state of zero pressure is infinite in value. We
get around this by finding the entropy change in an isothermal process from zero
pressure to the same given pressure P, assuming that the gas behaves as an ideal

gas at all times.
R P( Ov P R
(Sp—58,)7 = —_L (T)P mde = —_L ;dP

C
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Now form the so-called entropy departure from the difference

# H # S
(.SP_.SP)T - (.SP_SO)T + (.SO_.SP)T
difference in real and ideal change as if real  change as if ideal
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Using v =ZRT/P the last result may be written as

Pl (1-Z)R RT|[coZ
(SP _SP)T = _L |: P - P (?T) }dP
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Substituting T = T T and P = PP, and rearranging as we did for the enthalpy
departure term, we express the entropy departure in non-dimensional form as

(-S_1 - *S_)T P Pr _ cZ
Z = = . [(Z—l)+TR(T)

}f (InP,)
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Z. is called the entropy departure factor and is found in Table A-30, called the entropy
departure chart. In Table A-30 s* is replaced by sideal. The entropy change during a

process 1-2 is given as
S, 781 = (52 9 )ffferrf - R” (252 - Z-Sd )

Sy, =8 = (SE —35 );’(Feaf - R(ZSZ B ZSI)

Note: The concept for finding the entropy change using the entropy departure charts
Is different than that used to find the enthalpy change. The entropy change between
two states is the ideal-gas change between the two states plus two correction factors,
one at each state—the entropy departures, to account for nonideal gas behavior at
each state.
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