
Thermodynamic Property Relations
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Some thermodynamic properties can be measured directly, but many others cannot. 
Therefore, it is necessary to develop some relations between these two groups so 
that the properties that cannot be measured directly can be evaluated. The 
derivations are based on the fact that properties are point functions, and the state of 
a simple, compressible system is completely spec­ified by any two independent, 
intensive properties. 

Some Mathematical Preliminaries

Thermodynamic properties are continuous point functions and have exact 
differentials.   A property of a single component system may be written as general 
mathematical function z = z(x,y).  For instance, this function may be the pressure P = 
P(T,v).  The total differential of z is written as 
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where

Taking the partial derivative of M with respect to y and of N with respect to x yields

Since properties are continuous point functions and have exact differentials, the 
following is true 

The equations that relate the partial derivatives of properties P, v, T, and s of a simple
compressible substance to each other are called the Maxwell relations. They are
obtained from the four Gibbs equations. The first two of the Gibbs equations are
those resulting from the internal energy u and the enthalpy h.

du T ds P dv
dh T ds v dP

 
 
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The second two Gibbs equations result from the definitions of the Helmholtz function
a and the Gibbs function g defined as

a u Ts
da du T ds sdT
da sdT P dv

g h Ts
dg dh T ds sdT
dg sdT v dP

 
  
  

 
  
  

Setting the second mixed partial derivatives equal for these four functions yields the 
Maxwell relations
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Now we develop two more important relations for partial derivatives—the reciprocity 
and the cyclic relations.  Consider the function z = z(x,y) expressed as x = x(y,z).  
The total differential of x is 

Now combine the expressions for dx and dz.

Rearranging,
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Since y and z are independent of each other, the terms in each bracket must be zero.  
Thus, we obtain the reciprocity relation that shows that the inverse of a partial 
derivative is equal to its reciprocal.

or

The second relation is called the cyclic relation.
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Another way to write this last result is

The Clapeyron Equation

The Clapeyron equation enables us to determine the enthalpy change asso­ciated 
with a phase change, hfg, from knowledge of P, v, and T data alone. 
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Consider the third Maxwell relation

During phase change, the pressure is the saturation pressure, which depends on the 
temperature only and is independent of the specific volume.  That is Psat = f(Tsat).  
Therefore, the partial derivative           can be expressed as a total derivative 
(dP/dT)sat, which is the slope of the saturation curve on a P-T diagram at a specified 
state.  This slope is independent of the specific volume, and thus it can be treated as 
a constant during the integration of the third Maxwell relation between two saturation 
states at the same temperature.  For an isothermal liquid-vapor phase-change 
process, the integration yields 
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During the phase-change process, the pressure also remains constant.  Therefore, 
from the enthalpy relation

Now we obtain the Clapeyron equation expressed as 
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Example 12-1

Using only P-v-T data, estimate the enthalpy of vaporization of water at 45oC.

The enthalpy of vaporization is given by the Clapeyron equation as 

Using the P-v-T data for water from Table A-4
3
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The actual value of hfg is 2394.0 kJ/kg.  The Clapeyron equation approximation is low 
by about 1 percent due to the approximation of the slope of the saturation curve at 
45oC.

Clapeyron-Clausius Equation

For liquid-vapor and solid-vapor phase-change processes at low pressures, an 
approximation to the Clapeyron equation can be obtained by treating the vapor phase 
as an ideal gas and neglecting the specific volume of the saturated liquid or solid 
phase compared to that of the vapor phase.  At low pressures
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For small temperature intervals, hfg can be treated as a constant at some average 
value.  Then integrating this equation between two saturation states yields
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General Relations for du, dh, ds, Cv, and Cp

The changes in internal energy, enthalpy, and entropy of a simple, compress­ible 
substance can be expressed in terms of pressure, specific volume, tem­perature, and 
specific heats alone. 

Consider internal energy expressed as a function of T and v.

Recall the definition of the specific heat at constant volume 

Then du becomes 
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Now let’s see if we can evaluate             in terms of P-v-T data only.  Consider the 
entropy as a function of T and v; that is, 

Now substitute ds into the T ds relation for u.

Comparing these two results for du, we see
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Using the third Maxwell’s relation

T v
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            

Notice that the derivative               is a function of P-v-T only.  Thus the total 
differential for u = u(T,v) is written as 

Example 

Do you remember that we agreed that the internal energy of an ideal gas depended 
only on temperature?  Let’s evaluate the following partial derivative for an ideal gas.
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For ideal gases

This result helps to show that the internal energy of an ideal gas does not depend 
upon specific volume.  To completely show that internal energy of an ideal gas is 
independent of specific volume, we need to show that the specific heats of ideal 
gases are functions of temperature only.  We will do this later.

We could also find the following relations for dh and ds where h = h(T,P)  and s = 
s(T,v) or s = s(T,P) 
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Example 

Determine an expression for the entropy change of an ideal gas when temperature 
and pressure data are known and the specific heats are constant.

For an ideal gas

For constant specific heat this becomes
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Assignment

Determine the expression for dh when h = h(T,v).

Specific Heats

For specific heats, we have the following general relations:

Let Cp0 be the ideal-gas, low-pressure value of the specific heat at constant pressure.  
Integrating the above relation for Cp along an isothermal (T = constant) path yields

Given the equation of state, we can evaluate the right-hand side and determine the 
actual specific heat as Cp = Cp(T,P).
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Other relations for the specific heats are given below.

where  is the volume expansivity and  is the isothermal compressibility, defined as

Example 

Determine Cp – Cv for ideal gases.
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The difference Cp – Cv is equal to R for ideal gases and to zero for incom­pressible 
substances (v = constant).

Example 

Show that Cv of an ideal gas does not depend upon specific volume.

For an ideal gas



21

Therefore, the specific heat at constant volume of an ideal gas is independent of 
specific volume. 
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The Joule-Thomson Coefficient

The temperature behavior of a fluid during a throttling (h = constant) process is 
described by the Joule-Thomson coefficient, defined as

The Joule-Thomson coefficient is a measure of the change in temperature of a 
substance with pressure during a constant-enthalpy process, and it can also be 
expressed as
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Example For You To Do

Take a moment to determine the Joule-Thomson coefficient for an ideal gas.  What is 
the enthalpy change of an ideal gas during an isothermal process?

Enthalpy, Internal Energy, and Entropy Changes for Real Gases

The enthalpy, internal energy, and entropy changes of real gases can be determined 
accurately by utilizing generalized enthalpy or entropy departure charts to account for 
the deviation from the ideal-gas behavior.  Considering the enthalpy a function of T
and P, h = h(T,P), we found dh to be 

To integrate this relation to obtain the expression for the enthalpy change of a real 
gas, we need the equation of state data, the P-v-T relation, and Cp data.  Here we 
use the generalized compressibility charts and the compressibility factor, Figure A-
15a, to supply the equation of state data.  Let’s integrate the dh equation between 
two states from T1, P1 to T2, P2. 
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Since enthalpy is a property and is thus a point function, we can perform the 
integration over any convenient path.  Let’s use the path shown below.

The path is composed of an isothermal process at T1 from P1 to P0 (P0 is low enough 
pressure that the gas is an ideal gas or can be taken to be zero), a constant pressure 
process at P0 from T1 to T2, and finally an isothermal process at T2 from P0 to P2.  
Using the superscript asterisk (*) to denote the ideal-gas state, the enthalpy change 
for the real gas is expressed as

h h h h h h h h2 1 2 2 2 1 1 1         ( ) ( ) ( )



25

For process 2* to 2, T2 = constant.

For process 1* to 2*, P0 = constant (Cp0 is the specific heat at the ideal gas state).

For process 1 to 1*, T1 = constant. 
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The enthalpy difference (h* - h) is called the enthalpy departure and represents the 
variation of the enthalpy of a gas with pressure at a fixed temperature.  When we 
don’t have the actual P-v-T data for the gas, we can use the compressibility factor to 
relate P, v, and T by

Pv ZRT
where Z is a function of T and P through the reduced temperature, Tr = T/Tcr, and the 
reduced pressure, Pr = P/Pcr.
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Noting that
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we write the enthalpy departure in terms of the enthalpy departure factor Zh, as
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Zh is given as a function of PR and TR in Figure A-29, called the enthalpy departure 
chart.  In Figure A-29 h* has been replaced by hideal.  The enthalpy change between 
two states 1 and 2 is 
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Example 12-6

Propane gas flows steadily through a pipe.  The inlet state is 407 K, 5.21 MPa, and 
the exit state is 370 K, 4.26 MPa. Determine the heat loss from the propane to the 
surroundings per unit mass of propane.

Conservation of mass

  m m m1 2 
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Conservation of energy
 
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Now, we approximate the enthalpy difference by using the above real gas analysis and 
determine the heat transfer per unit mass as

Use Tables A-1 and A-2 to obtain properties of propane.   From Table A-1, Tcr = 370 
K, Pcr = 4.26 MPa.  From Table A-2, Cp0 = 1.6794 kJ/kgK.
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Figure A-29 yields 
Z Zh h1 2145 2 5 . , .

If we assumed propane to be an ideal gas



31

The error in assuming propane is ideal is

%
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54 1%
The internal energy change of a real gas is given as (u = h – Pv)

The entropy change for a real gas at constant temperature is determined as follows.

Let’s assume entropy is expressed in terms of T and P as s = s(T,P).  Then
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Now let’s consider a constant temperature process and determine the entropy 
change at constant temperature from zero pressure, where the gas is assumed to be 
ideal, to a given pressure where the gas is assumed to be real.

The direct substitution of the compressibility factor into this equation would do us no 
good since the entropy of an ideal-gas state of zero pressure is infinite in value.  We 
get around this by finding the entropy change in an isothermal process from zero 
pressure to the same given pressure P, assuming that the gas behaves as an ideal 
gas at all times.
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Now form the so-called entropy departure from the difference

Using v =ZRT/P the last result may be written as

Substituting T = TcrTR and P = PcrPR and rearranging as we did for the enthalpy 
departure term, we express the entropy departure in non-dimensional form as
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Zs is called the entropy departure factor and is found in Table A-30, called the entropy 
departure chart.  In Table A-30 s* is replaced by sideal.  The entropy change during a 
process 1-2 is given as

Note: The concept for finding the entropy change using the entropy departure charts 
is different than that used to find the enthalpy change.  The entropy change between 
two states is the ideal-gas change between the two states plus two correction factors, 
one at each state—the entropy departures, to account for nonideal gas behavior at 
each state.


