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Thermodynamic Properties 
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STATE PRINCIPLE

Any two independent intensive thermodynamic
properties are sufficient to describe the state of a
system containing a single pure substance.



Intensive and Extensive Properties

• The value of an extensive property is dependent of 
the mass of the system. 

• The value of an intensive property is independent
of the mass of the system. 

• Partition box

Po, To, 
Vo, mo

P1
T1
V1
m1

P2
T2
V2
m2

P0 = P1 = P2  Intensive Prop
T0 = T1 = T2  Intensive Prop
V0  V1  V2  Extensive Prop
m0  m1  m2  Extensive Prop

• Try specific volume: 
v = V/m  v0 = v1 = v2  Intensive Property



Intensive and Extensive Properties
Property Extensive Intensive
Mass m -

Temperature - T

Pressure - P

Volume V v = V/m (specific volume)

Internal Energy U u = U/m (specific internal 
energy)

Enthalpy H h = H/m (specific enthalpy)

• Any extensive property can be made intensive 
(specific) by dividing by mass.



Pure Substances
• Are composed of a single 

chemical species (e.g., either O2
or CO2 but not a mixture of O2 and 
CO2).

• May exist in more than one phase 
(e.g., solid and liquid)

A mixture of 
snow, ice, liquid water
and water vapor is a 

pure substance.



phase Change and P-v-T Surface
• Constant Pressure Heating in Piston-Cylinder at P = 1 atm



3.3.1 Phase Change and P-v-T Surface
• Constant Pressure Heating in Piston-Cylinder at P = 2 atm



3.3.1 Phase Change and P-v-T Surface
• Regions on T-v Diagram
• Note directions of Isobars



3.3.1 Phase Change and P-v-T Surface



3.3.1 Phase Change and P-v-T Surface
• Regions on P-v Diagram
• Note directions of Isotherms



3.3.1 Phase Change and P-v-T Surface
• Three-Dimensional P-v-T Surface 



3.4 Liquid-Vapor Tables

• For Ideal Gases (treated later): 
– Pv = RT
– Very simple and accurate relation

• No similar relation exists for liquids, saturated 
liquid vapor mixtures or superheated vapors

• Typically superheated vapors do not obey the 
ideal gas law.

• Use data tabulated based on T and P
– Compressed Liquid Tables
– Saturated Liquid-Vapor Tables
– Superheated Vapor Tables



3.5 Saturation and Quality 
• Property Notation (Subscripts):

– L = Saturated Liquid (e.g., vL and uL)
– V = Saturated Vapor (e.g., vV and uV)
– LV = Difference between saturated vapor and liquid 

values (e.g., vLV = vV - vL)
– SAT = Saturated Mixture (TSAT and PSAT)



3.5 Saturation and Quality 
• Quality (x): Mass Fraction of Saturated Vapor



3.5 Saturation and Quality 
• Specific Volume (v) of Saturated Liquid Vapor Mixture 

with quality x
v = vL + xvV

• Quality of Saturated Liquid Vapor Mixture with Specific 
Volume (v)

L L

V L LV

v v v v
x

v v v
 

 




3.5 Saturation and Quality 

• Determine Phase if:
– P = 100 kPa and v = 0.001000 m3/kg
– P = 100 kPa and T = 1000C
– P = 100 kPa and v = 1.0000 m3/kg



3.6 Compressed (Subcooled) Liquids

P = 1000 kPa & T = 1050C
PSAT(1050C) = 122.35 kPa

Since P > PSAT(T)
 Compressed Liquid

T = 700F & P = 14.7 psia
TSAT(14.7 psia) = 2120F

Since T < TSAT(P)
 Subcooled Liquid

• Subscript CL = Compressed Liquid: e.g.,  vCL



3.6 Incompressible Liquid Approx (ICL)
• vCL(700C, 5000 kPa) = 0.001020 m3/kg
• vL(700C) = 0.00102 m3/kg
• vL(5000 kPa) = 0.00129 m3/kg
• vCL(T,P)  vL(T)  ICL



3.6 Incompressible Liquid Approx (ICL)

• vCL(T,P)  vL(T)
• uCL(T,P)  uL(T)
• hCL(T,P)  hL(T) + vL(T) [P – PSAT(T)]

– Recall h = u + Pv  h sensitive to P
– If P  PSAT(T)
 hL(T) >> vL(T) [P – PSAT(T)]
 hCL(T,P)  hL(T)



3.7 Superheated Vapor 

T = 4000C & P = 3000 kPa
TSAT (3000 kPa) = 233.90C

Since T > TSAT(P)  Superheated Vapor



3.7 Superheated Vapor 



3.8 Gases
• Molecules are relatively far apart
• Do not feel one another’s presence except 

during collisions
• Have a low density
• Are highly compressible
• In next two slides, compare

– Liquid-Vapor working fluid in steam engine
– Gas working fluid in gas turbine



3.8 Gases



3.8 Gases



3.9 Ideal Gas Law

• Universal Gas Constant (   ): All gases have same 
value.

• Particular Gas Constant (R): Each gas has a 
unique value.

R



3.10 Compressibility Factor

R
CR

R
CR

Pv
Z

RT
P

P
P

T
T

P


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• Use if not IGL and vapor tables not available



3.11 Other Equations of State
• Van der Waals’ equation

• Redlich-Kwong Equation

• Benedict-Webb-Rubin Equation of State

• Virial Equation of State
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3.12 Internal Energy and Enthalpy 

• Internal Energy
– If not an ideal gas, u = u(T,P)
– If ideal gas, u = u(T)  u(P)

• Enthalpy
– Recall h = u + Pv
– For an Ideal Gas, Pv = RT   h = u(T) + RT
– Therefore for ideal gas, h = h(T)  h(P)

• T, u and h are dependent properties for ideal 
gases



3.13 Heat Capacities and Specific Heats

• Approximately,

• Heat capacity (CV) and specific heat capacity 
(cV) for constant volume process

• Heat capacity (CP) and specific heat capacity 
(cP) for constant pressure process
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3.13 Specific Heats for Ideal Gases

• For an ideal gas, h = h(T)  h(P) and

• Similarly, for ideal gas u = u(T)  u(V) and
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3.13 Specific Heats for Ideal Gases



3.13 Specific Heats for Ideal Gases

• R = cP – cV

• For monatomic gases (e.g., He, Ar, Ne)
– cV = 3R/2 = Constant
– cP = 5R/2 = Constant

• u = cV T only if cV = constant
• h = cP T only if cP = constant
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3.13 Specific Heats for Solids and Liquids
• For incompressible solids and liquids,

– cP = cV

– Sometimes denoted as c
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3.14 Ideal Gas Tables 

• Unlike steam tables, pressure not tabulated
• Use Pv = RT to relate P, v and T
• Use tables to relate T, u and h



3.15 Some Other Thermodynamic Properties

• Isothermal Compressibility (k)

• Coefficient of Thermal Expansion (b)

• Joule Thompson Coefficient (m)

T

1 v
v P

      

P

1 v
v T

     
dV

dT dP
V

   

h

T
P

     


