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Thermodynamics  1
• Thermodynamics is the study of thermal processes in 

macroscopic systems.

• It is usually assumed that a classical thermodynamic system is 
a continuum, with properties that vary smoothly from point to 
point.

• The number of molecules in a macroscopic system is typically 
of the order NA = 6.02 x 1026 (Avogadro’s number).

• At STP (0oC and 1 atm), 1 kmole of a gas occupies 22.4 m3. 

• The molecular density at STP is 6.02 x 1026/22.4 
≈ 2.7 x1025 molecules/m3 (Loschmidt’s number).

• Thus, a cube of side 1 mm contains about 1016 molecules, 
while a cube of side 10 nm contains about 10 molecules. 

• Clearly, the continuum model breaks down in the latter case.
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Thermodynamics  2
• The central concept of thermodynamics is temperature, which 

cannot be expressed in terms of the fundamental quantities of 
mass, length and time.

• Temperature is a statistical parameter, which may be defined 
precisely only for a macroscopic system.

• In this course, we study equilibrium thermodynamics from the 
standpoints of both classical thermodynamics and statistical 
thermodynamics.

• Given time, the alternative approach of Information Theory will 
be introduced.

• We ignore the more difficult topic of non-equilibrium 
thermodynamics, except for a brief foray into kinetic theory.
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Einstein on Thermodynamics

• “A theory is the more impressive 
the greater the simplicity of its 
premises, and the more extended 
its area of applicability.   

• Classical thermodynamics… is the 
only physical theory of universal 
content which I am convinced that, 
within the applicability of its basic 
concepts, will never be overthrown.”

Albert Einstein
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Eddington on Thermodynamics

• “If someone points out to you that 
your pet theory of the universe is in 
disagreement with Maxwell’s equations 
– then so much the worse for Maxwell’s 
equations.

• But if your theory is found to be 
against the second law of 
thermodynamics I can offer you no 
hope; there is nothing for it but to 
collapse in deepest humiliation.”
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Thermodynamics  3

• Classical thermodynamics, which was developed in the first half 
of the nineteenth century by Carnot, Clausius, Joule, Kelvin, 
and Mayer (and others), is a phenomenological theory, dealing 
with macroscopic phenomena, and avoiding atomic concepts.

• Its strength lies in the generality of its predictions, which are 
based on the small number postulates set out in the laws of 
thermodynamics, and apply to all macroscopic systems; e.g. 
solids, fluids and electromagnetic radiation. 

• Its weakness also lies in great generality, since it cannot be 
applied to real systems without auxiliary input, either 
experimental or theoretical.

• In particular, the equation of state of a fluid, linking pressure, 
volume and temperature, must be derived from experiment. 
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The Laws of Thermodynamics: Summary

• Zeroth Law
The temperature θ is introduced via the concept of thermal 
equilibrium.

• First Law
Energy conservation in a closed system is used to define both 
the heat Q transferred and the change of internal energy of the 
system ΔU.

• Second Law
The entropy S of an isolated system is defined as a property of 
the system which has a maximum at equilibrium; i.e.

ΔS ≥ 0, or S → Smax.

• Third Law
The entropy S → 0 as T → 0. 
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Isolated, Closed and Open Systems  1

• A system is the portion of the physical world being studied.
• The system plus surroundings comprise a universe.

• The boundary between a system and its surroundings is the 
system wall.

• If heat cannot pass through the system wall, it is termed an 
adiabatic wall, and the system is said to be thermally isolated
or thermally insulated.

• If heat can pass through the wall, it is termed a diathermal 
wall.

• Two systems connected by a diathermal wall are said to be in 
thermal contact.
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Isolated, Closed and Open Systems  2
• An isolated system cannot exchange mass or energy with its 

surroundings.

• The wall of an isolated system must be adiabatic.

• A closed system can exchange energy, but not mass, with 
its surroundings.

• The energy exchange may be mechanical (associated with a 
volume change) or thermal (associated with heat transfer 
through a diathermal wall).

• An open system can exchange both mass and energy with 
its surroundings.
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Isolated, Closed and Open Systems  3

Isolated 
System

Neither energy 
nor mass can be 

exchanged.

Closed
System

Energy, but not 
mass can be 
exchanged.

Open
System

Both energy and 
mass can be 
exchanged.
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Thermal Equilibrium and the Zeroth Law

• If warm and cool objects are placed in thermal contact, 
energy, known as heat, flows from the warm to the cold object 
until thermal equilibrium is established.

• Zeroth Law of Thermodynamics
Two systems, separately in thermal equilibrium with a third 
system, are in thermal equilibrium with each other.

• The property which the three systems have in common is 
known as temperature θ.

• Thus the zeroth law may be expressed as follows:
if θ1 = θ2 and θ1 = θ3, then θ2 = θ3.
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Thermodynamic Variables
• Thermodynamic variables are the observable macroscopic 

variables of a system, such as P, V and T.
• If the are used to describe an equilibrium state of the system, 

they are known as state variables. 

• Extensive variables depend on the size of the system; e.g. 
mass, volume, entropy, magnetic moment.

• Intensive variables do not depend on size; e.g. pressure, 
temperature, magnetic field.

• An extensive variable may be changed to an intensive 
variable, known as a specific value, by dividing it by a 
suitable extensive variable, such as mass, no.of kmoles, or no. 
of molecules.

• Example: the specific heat is normally (heat capacity)/(mass).
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Equilibrium States

• An equilibrium state is one in which the properties of the 
system do not change with time.

• In many cases, an equilibrium state has intensive variables 
which are uniform throughout the system.

• A non-equilibrium state may contain intensive variables which 
vary in space and/or time.

• An equation of state is a functional relationship between the 
state variables; e.g. if P,V and T are the state variables, then 
the equation of state has the form f(P, V, T) =0.

• In 3-dimensional P-V-T space,
an equilibrium state is represented by a point,
and the equation of state is represented by a surface.
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Processes  1
• A process refers to the change of a system from one 

equilibrium state to another.
• The initial and final states of a process are its end-points.

• A quasistatic process is one that takes place so slowly that 
the system may be considered as passing through a 
succession of equilibrium states.

• A quasistatic process may be represented by a path (or line) 
on the equation-of-state surface.

• If it is non-quasistatic, only the end-points can be shown.

• A reversible process is one the direction can be reversed by 
an infinitessimal change of variable.

• A reversible process is a quasistatic process in which no 
dissipative forces, such as friction, are present.

• A reversible change must be quasistatic, but a quasistatic 
process need not be reversible; e.g. if there is hysteresis.
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Processes  2
• An isobaric process is one in which the pressure is constant.
• An isochoric process is one in which the volume is constant.
• An isothermal process is one in which the temperature is 

constant.

• An adiabatic process is one in which no heat enters or leaves 
the system; i.e. Q = 0.

• An isentropic process is one in which the entropy is constant.
• It is a reversible adiabatic process.

• If a system is left to itself after undergoing a non-quasistatic 
process, it will reach equilibrium after a time t much longer than 
the longest relaxation time τ involved; i.e. t » τ.

• Metastable equilibrium occurs when one particular relaxation 
time τ0 is much longer than the time Δt for which the system is 
observed; i.e. τ0» Δt .
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Three Types of Process

AdiabatAdiabat

IsothermIsotherm

PP

VVHeat bath or reservoirHeat bath or reservoir

Isothermal processIsothermal process Adiabatic processAdiabatic process

Adiabatic free expansionAdiabatic free expansion PP

VV

●●11

●●22

End pointsEnd points

SystemSystem



16

Boyle’s Law and the Ideal Gas Scale

• Boyle’s Law
• At sufficiently low pressure, 

the product PV was found to 
be constant for gases held at 
a given temperature θ; i.e.

PV = f(θ) for P → 0.

• Fixed points (prior to 1954)
• The ice and steam points 

were defined to be 0oC and 
100oC exactly.

• The ideal gas (or kelvin) 
scale was defined as

TK = TC + 273.15.

h

P

P = PA + gρh

P = a(TC + 273.15)
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The Ideal Gas Law
• Fixed point (1954)
• The triple point of water is Ttr = 273.16 K, Ptr = 6.0 x 10–3 atm.
• Ideal gas law PV = nRT or Pv = RT, 
• where n is the no. of kmoles, v is the volume per kmole, T is the absolute 

temperature in K,  and the gas constant R = 8.314 x 103 J/(K.kmol).

• For a constant quantity of gas, P1V1/T1 = P2V2/T2.

PP PP VV

VV

T increasingT increasing

TT TT
V increasingV increasing P increasingP increasing
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Van der Waals’ Equation  1
• The Van der Waals equation of state

(P + a/v2)(v – b) = RT,
reproduces the behavior of a real gas more accurately than 
the ideal gas equation through the empirical parameters a 
and b, which represent the following phenomena.

i. The term a/v2 represents the attractive intermolecular forces, 
which reduce the pressure at the walls compared to that 
within the body of the gas. 

ii. The term – b represents the volume occupied by a kilomole 
of the gas, which is unavailable to other molecules.

• As a and b become smaller, or as T becomes larger, the 
equation approaches ideal gas equation Pv = RT.

• An inflection point, which occurs on the curve at the critical 
temperature Tc, gives the critical point (Tc,Pc).
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Van der Waals’ Equation  2

• Below the critical temperature Tc, the curves show maxima and minima. A 
physically reasonable result is obtained by replacing the portion xy, with a 
straight line chosen so that A1 = A2. C is the critical point.

• A vapor, vapor, which occurs below the critical temperature, differs from a gasgas in 
that it may be liquefied by applying pressure at constant temperature.   

PP

VV

PP

VV

C

C

Isotherms at 
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TTcc

A1 A2

TTccxy
vapor

gas

lower T

Inflection pointInflection point

Isotherms at 
higher T

Isotherms at 
higher T
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Thermodynamic Work  1
• Sign convention

The work done by the system is defined to be positive.

With this definition, the work done on the system – the external 
work of mechanics – is negative.

The work done in a reversible process – the configuration 
work – is given by the product of an intensive variable and its 
complementary external variable; e.g. dW = PdV.

• Reversible isochoric process W = 0, since ΔV = 0.

• Reversible isobaric process W = P ΔV = P(V2 – V1). 

• These results hold for all materials.
• The work done is always positive for expansion

and negative for compression.
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Thermodynamic Work  2

• Calculating the work done in a reversible isothermal process 
requires the equation of state of the system to be known.

• Reversible isothermal process for an ideal gas (PV = nRT)
W = ∫PdV = nRT ∫dV/V = nRT ln(V2/V1).

In both cases, the work done by the system equals the shaded 
area under curve. 

Isobaric process
W = P(V2 – V1))P

V1 V2

Isothermal 
process

P

VV1 V2
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Thermodynamic Work  3
• Reversible cyclic process

• W = ∫ PdV  equals the 
area enclosed by the PV 
curve.

• W is positive if the area is 
traversed in a clockwise
sense (as shown), and 
negative if traversed 
counter-clockwise.

PP

VV

The equality The equality W = ∫ PdV applies to reversible processes only.applies to reversible processes only.
The work done in an irreversible process is given by the The work done in an irreversible process is given by the 
inequality W inequality W < < ∫ PdV.
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Expansivity  and Compressibiity
• An equation of state may be written as

P = P(V,T), V = V(T,P) or T = T(P,V).
• Thus, for example,

dV = (∂V/∂T)PdT +  (∂V/∂P)TdP.

• In general (∂x/∂y)z (∂y/∂z)x (∂z/∂x)y = – 1,
or                  (∂y/∂x)z = – (∂y/∂z)x (∂z/∂x)y .

• Two experimental quantities which may be used to find the 
equation of state are the following:
coefficient of volume expansion β ≡ (1/V) (∂V/∂T)P;
isothermal compressibility κ ≡ – (1/V) (∂V/∂P)T.

• Thus    dV = βVdT – κV dP.
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Useful Theorem

Remember theRemember the
negative signs.negative signs.
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Hysteresis
• Hysteresis curves are examples of processes which may be 

quasistatic, but are not reversible.
• Hysteresis is caused by internal friction, and is a well-known 

feature of ferromagnetism and first-order phase transitions.
• The specification of the state of a homogeneous system by a 

small number of thermodynamic variables breaks down in the 
presence of hysteresis, since the equilibrium state depends on 
the previous history of the system.

Signal amplitudeSignal amplitude
of high of high 

temperature phase.temperature phase.

Signal amplitudeSignal amplitude
of lowof low

temperature phase.temperature phase.
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First Law of Thermodynamics

Microscopic picture
• The internal energy U is made up of the translational and 

rotational KE, and intermolecular PE of the gas molecules of 
the system.

• For an ideal monatomic gas, U is the total translational KE, 
known as the thermal energy, since it is proportional to T.

Q

WΔU ΔΔU = Q – W ,
where ΔU is the increase of internal energy of 
the system, Q is the heat entering the system, 
and W is the work done by the system. 

ΔU depends on –W because gas molecules 
rebound off the piston moving to right with a
lower speed, thus reducing the KE of the gas.
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Exact and Inexact Differentials
• The differential form of the 1st Law is

dU = dQ – dW,
where dU is an exact differential, because U is a state 
variable, and both dQ and dW are inexact differentials, 
since Q and W are not state variables.

• Exact differential dF(x,y)
dF is an exact differential if F(x,y) is a function of the variables 
x and y. Thus

dF = A(x,y) dx + B(x,y) dy,
where A(x,y) = (∂F/∂x)y and B(x,y) = (∂F/∂y)x.

• Inexact differential dF’(x,y)
If dF’ = A’(x,y) dx + B’(x,y) dy is an inexact differential, there is 
no function F’(x,y) from which dF’ can be derived.



28

Tests for an Exact Differential

• Note: for a state function F = F(V,T,N),
dF = (∂F/∂V)T,NdV + (∂F/∂T)N,VdT + (∂F/∂N)V,TdN,

and ∂2F/∂V∂T = ∂2F/∂T∂V, etc.



Heat Capacities
• The heat capacity at constant parameter i is given by

Ci = (dQ/dT)i .
Note that one cannot use the partial form (Q/T)i , since dQ is 
an inexact differential.

Heat capacity at Constant Volume CV

• dQ = dU + PdV, so that CV = (dQ/dT)V = (U/T)V.

Heat capacity at Constant Pressure CP

• CP = (dQ/dT)P = (U/T)P +  P(V/T)P.

• The enthalpy H is defined as H = U + PV, so that
(dH/dT)P = (U/T)P +  P(V/T)P.

Thus, CP = (H/T)P .
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Adiabatic process in an Ideal Gas  1
• Ratio of specific heats γ = cP/cV = CP/CV.

• For a reversible process, dU = dQr – PdV.
• For an adiabatic process, dQr = 0, so that dU = – P dV.

• For an ideal gas, U = U(T), so that CV = dU/dT.

Also, PV = nRT and H = U + PV, so that H =H(T). 
Thus, H = H(T) and CP = dH/dT.

• Thus, CP – CV = dH/dT – dU/dT = d(PV)/dT = nR.

• CP – CV = nR is known as Mayer’s EquationMayer’s Equation, which holds for an 
ideal gas only.

• For 1 kmole, cP – cV = R, where cP and cV are specific heats.
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Adiabatic process in an Ideal Gas  2

• Since dQ = 0 for an adiabatic process,
dU = – P dV and dU = CV dT, so that dT = – (P/CV) dV .

• For an ideal gas, PV = nRT, 
so that P dV +V dP = nR dT =  – (nRP/CV) dV.

Hence V dP + P (1 +nR/CV) dV = 0.

Thus, CV dP/P + (CV + nR) dV/V = 0.

For an ideal gas, CP – CV = nR.

so that CV dP/P + CP dV/V = 0, or dP/P + γ dV/V = 0.
• Integration gives ln P + γ ln V = constant, so that

PVγ =  constant.
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Adiabatic process in an Ideal Gas  2
• Work done in a reversible adiabatic process

• Method 1: direct integration
• For a reversible adiabatic process, PVγ = K.
• Since the process is reversible, W =  PdV, 

so that W  = K  V–γ dV  =  – [K/(γ –1)] V–(γ–1) |

= – [1/(γ –1)] PV |  

 W = – [1/(γ –1)] [P2V2 – P1V1].
• For an ideal monatomic gas, γ = 5/3, so that

W = –(3/2)] [P2V2 – P1V1].

V2

V1

P1V1

P2V2
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Adiabatic process in an Ideal Gas  3
• Work done in a reversible adiabatic process

• Method 2: from 1st Law
• For a reversible process, W  =  Qr – ΔU  

so that W =  – ΔU, since Qr = 0 for an adiabatic process.
For an ideal gas, ΔU  =  CV ΔT = ncV ΔT =  ncV (T2 – T1).
Thus, W = – ncV (T2 – T1).

• For an ideal gas PV = nRT, 
so that W =  – (cV/R)[P2V2 – P1V1].

• But R = cP – cV (Mayer’s relationship for an ideal gas),
so that W =  – [cV/(cP – cV)][P2V2 – P1V1] 

i.e. W   =  – [1/(γ –1)] [P2V2 – P1V1].



34

Reversible Processes for an Ideal Gas

Adiabatic 
process

Isothermal 
process

Isobaric 
process

Isochoric 
process

PVγ = K
γ = CP/CV

T constant P constant V constant

W =  – [1/(γ –1)] 
.[P2V2 – P1V1]

W = nRT ln(V2 /V1) W = P V W = 0

ΔU = CV ΔT ΔU = 0 ΔU = CV ΔT ΔU = CV ΔT

PV = nRT,  U = ncVT, cP – cV = R, γ = cP/cV.

Monatomic ideal gas cV = (3/2)R, γ = 5/3.
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The Fundamental Thermodynamic Relation  
• The 1st Law, dU = dQ – dW, relates an exact differential, dU, to 

the difference between two inexact differentials.

• The change in a state function depends only on the initial and 
final states (ΔU = U2 – U1), and is independent of path, while Q 
and W are each dependent on path (although the difference 
between them must be path-independent).

• The right-hand-side of the differential form of the 1st Law must 
be replaceable by an expression containing only state 
functions.

• This is done through the equation known variously as the 
fundamental thermodynamic relation, the thermodynamic 
identity, or the central equation of thermodynamics:

dU = T dS – P dV.
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The Entropy 
• The entropy S is introduced through the fundamental relation:

dU = TdS – PdV,
where (TdS – PdV) equals (dQ – dW) of the 1st Law. 

• Only for a reversible process (r) can the individual terms be 
equated: i.e.

dQr = TdS,      dWr = PdV.

• In general,
dQ ≤ TdS,      dW ≤ PdV,

where the equality sign refers to a reversible process.

• Examples of irreversible changes are the following:
i.  a free adiabatic expansion (for dQ ≤ TdS);
ii. a piston with friction (for dW ≤ PdV).
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Second Law of Thermodynamics  1
• The entropy of an isolated system never decreases; i.e.

ΔS ≥ 0,
or, at equilibrium, S → Smax.

• For a reversible (idealized) process only,
ΔS = 0,  dS = dQ/T.

• Examples of irreversible (real) processes:
• i. temperature equalization;
• ii.  mixing of gases;
• iii. conversion of macroscopic (ordered) KE to thermal (random)    

KE.

The last two cases are obvious examples of the association of 
entropy with disorder.
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Second Law of Thermodynamics  2
• Features of the Entropy
• It is a state function, so that ΔS between given states is 

independent of path.

• It is a quantitative measure of the disorder of a system.

• It gives a criterion for the direction of a process, since an 
isolated system will reach a state of maximum entropy.

• ΔS may be negative for a portion of a composite system.

• An increase of entropy does not require an increase of 
temperature; e.g. in the mixing of gases at the same 
temperature, or in the melting of a solid at the melting point.

• An increase of temperature does not necessarily imply an 
increase of entropy; e.g. in the adiabatic compression of a gas.
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The 2nd Law and Life on Earth  1
• The existence of low-entropy organisms like ourselves has 

sometimes been used to suggest that we live in violation of the 
2nd Law.

• Sir Roger Penrose has considered our situation in his 
monumental work “The Road to Reality: a Complete Guide to 
the Laws of the Universe” (2005).

• In it, he points out that it is a common misconception to believe 
that the Sun’s energy is the main ingredient needed for our 
survival.  However, what is important is that the energy source 
be far from thermal equilibrium.  For example, a uniformly 
illuminated sky supplying the same amount of energy as the 
Sun, but at a much lower energy, would be useless to us. 

• Fortunately the Sun is a hot sphere in an otherwise cold sky.
• It is a low entropy source, which keeps our entropy low.
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The 2nd Law and Life on Earth  2

• The optical photons supplied by the Sun contain much more 
energy than the IR photons leaving us, since εph = hν.   

• Since the energy the energy reaching us is contained in fewer 
photons, the Sun is a low entropy source.

• Plants utilize the low entropy energy, to reduce their entropy 
through photosynthesis.

• We keep our entropy low by breathing oxygen produced by 
plants, and by eating plants, or animals ultimately dependent on 
plants.
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Increasing Entropy: No Gravity & Gravity 

• Without gravity, entropy increases as the gas spreads out.
• When gravity is present, clumping increases the entropy, which 

changes enormously with the formation of black holes.

Gas without 
gravity

With gravityWith gravity
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Entropy Changes: Reversible Processes  1
In General

dS = dQr/T = dU/T + P dV/T = CV(T) dT/T + P dV/T .
Special case: any ideal gas

dU = CVdT ,   PV = nRT .   
Thus,  ΔS  =  CV  dT/T  +  nR  dV/V

= CV ln(T2/T1)  +   nR ln(V2/V1).
Special case: ideal monatomic gas

CV = (3/2) nR .
Thus,  ΔS  =  nR {ln[(T2/T1)3/2(V2/V1)]},

or ΔS  =  nR ln(T3/2V) + constant.

Adiabatic process: ΔS  = ∫dQr/T = 0, since dQr = 0. 
Phase change: ΔS =  Q/T =  Li/T.
Isochoric process (ideal gas): ΔS  =  CV ln(T2/T1).
Isobaric process (ideal gas): ΔS  =  CP ln(T2/T1).
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Entropy Changes: Reversible Processes  2
• Path a (isotherm)
ΔS12 = nR ln(V2/V1), since T2 = T1.

• Path bi (isochore)
ΔS13 = CV ln(T3/T1).

• Path bii (isobar)
ΔS32 = CP ln(T2/T3) = CP ln(T1/T3).

• Paths b(i + ii)
ΔS12 = CV ln(T3/T1) + CP ln(T1/T3)

= (CP – CV ) ln(T1/T3)
= nR ln(T1/T3) = nR ln(V2/V1). 

since for bii,
V3/T3 = V2/T2 = V2/T1. 

P

V

Isochore

Isotherm

Isobar

aabibi

biibii
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Entropy Changes: Irreversible Processes  1
• Free adiabatic expansion of a gas (into a vacuum)
• This is the Joule process, for which Q, W and ΔU  are all zero. 
• Ideal gas : U = U(T), so that ΔT = 0.
• Since the final equilibrium state is that which would have been 

obtained in a reversible isothermal expansion to the same final 
volume,

ΔS = nR ln(V2/V1).

• Remember, that the entropy is a state function, so that its 
change depends only on the initial and final states, and not on 
the process.

• Real (non-ideal) gas: ΔU = Δ(KE) + Δ(PE) = 0. 
• Since the intermolecular PE increases with increasing volume, 

Δ(KE) decreases, so that the temperature decreases.
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Entropy Changes: Irreversible Processes  2
• Let the system have initial temperature T1 and entropy S(T), 

and the reservoir have temperature T0 and entropy S0 .
• = 

• For the system, Q = ∫C(T) dT and ΔS = ∫dQ/T = ∫[C(T)/T]dT.
• For the bath, Q0 = – Q = – ∫C(T) dT and ΔS0 = – Q/T0. 

• Special case: constant C.
C ∫dT/T = C ln(T0/T1),

ΔS0 = – Q/T0 = – C(T0 – T1)/T0 = C[(T1/T0) – 1].
ΔSuniv = ΔS + ΔS0

= C [ln(T0/T1) + (T1/T0) – 1]
= C(T1/T0)f(x),

where f(x) = x lnx + 1 – x, and x = T0/T1. 
From this result, we may show that ΔSuniv > 0 for T1 T0 .
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Three Types of Expansion

Ideal gas
ΔS = nR ln(V2/V1).

Any gas
ΔS = 0.

Ideal gas
ΔS = nR ln(V2/V1).

Isothermal expansion

Adiabatic expansion

Diathermal 
wall

(Adiabatic) free expansion 

Adiabatic 
wall

Adiabatic 
wall
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Comparison of Three Types of Expansion
Adiabatic* Isothermal* Free**

Universe
Surroundings

General
General

ΔS
ΔS

0
0

0
–

+
0

System General ΔS
Q
W

0
0
+

+
+
+

+
0
0

System Ideal gas ΔU
ΔT

–
–

0
0

0
0

System Real gas ΔU
Δ(PE)
Δ(KE)

ΔT

–
+
–
–

+
+
0
0

0
+
–
–

* Signs are reversed for contractions.
** There is no reverse process for a free expansion.
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2nd Law: Clausius and Kelvin Statements
• Clausius statement (1850)
• Heat cannot by itself pass from a colder to 

a hotter body; i.e. it is impossible to build 
a “perfect” refrigerator.

• The hot bath gains entropy, the cold bath loses it.
ΔSuniv= Q2/T2 – Q1/T1 =  Q/T2 – Q/T1 < 0.

• Kelvin statement (1851)
• No process can completely convert heat  

into work; i.e. it is impossible to build a 
“perfect” heat engine.

ΔSuniv= – Q/T < 0.
1st Law: one cannot get something for nothing 

(energy conservation).
2nd Law: one cannot even break-even (efficiency must  

be less than unity). 

Q1 = Q2 = Q
M is not active.
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Cyclic Heat Engine
• Second Law

ΔSuniv = ΔS + ΔS’ ≥ 0,
where S and S’ are the entropies of the 
system and surroundings respectively.

• After one cycle, 
ΔSuniv = ΔS’ = – Q2/T2 + Q1/T1 ≥ 0,
so that Q1/Q2 ≥ T1/T2. 

Also ΔU = 0, so that Q2 – Q1 = W, 

Efficiency
η = W/Q2 = 1 – Q1/Q2.

Thus, the maximum efficiency for a 
reversible or Carnot engine is

ηr = 1 – T1/T2.

HotHot
reservoirreservoir

ColdCold
reservoirreservoir

MechanismMechanism
(system)(system)

W

Q1

Q2
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Reversible Engine: the Carnot Cycle

• Stage 1 Isothermal expansion at 
temperature T2, while the entropy 
rises from S1 to S2.

• The heat entering the system is
Q2 = T2(S2 – S1).

• Stage 2 adiabatic (isentropic) 
expansion at entropy S2, while the 
temperature drops from T2 to T1.

• Stage 3 Isothermal compression at 
temperature T1, while the entropy 
drops from S2 to S1.

• The heat leaving the system is
Q1 = T1(S2 – S1).

• Stage 4 adiabatic (isentropic) 
compression at entropy S1, while the 
temperature rises from T1 to T2.

Since Q1/Q2 = T1/T2,
η = ηr = 1 – T1/T2.
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Maxwell’s relations: table 
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Maxwell Relation for G 

The Gibbs function (or free energy) is defined as
G = U – TS + PV

 dG = dU – TdS – SdT + PdV + Vdp .
dU = TdS – PdV,

so that dG = – SdT + VdP ; i.e. G = G(T,P).

dG =(G/T)PdT + (G/P)TdP,
so that S = – (G/T)P and V = (G/P)T...

2G/TP = 2G/PT,
so that (S/P)T =  –(V/T)P .

Note that Maxwell’s relation equates (S/P)T , a theoretical
quantity, to (V/T)P = Vβ, both of which may be measured.
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Adiabatic Free Expansion: Joule effect
The Joule effect is the adiabatic free expansion of a gas jnto a   
vacuum, which will cool a real (non-ideal) gas.

Q  =  0,  W  =  0,  ΔU  = 0  (1st Law).
For an ideal gas, U = U(T), so that ΔT  = 0.
Joule coefficient αJ = (∂T/∂V)U is negative for cooling.

(∂T/∂V)U = – (∂T/∂U)V (∂U/∂V)T = – (∂U/∂V)T/CV.
Now ΔU  =  T ΔS – P ΔV  (∂U/∂V)T =   T(∂S/∂V)T – P.
Maxwell’s relations give (∂S/∂V)T = (∂P/∂T)V , so that

αJ = (∂T/∂V)U = – [T(∂P/∂T)T – P]/CV .



54

Equilibrium when Ti = Tf and Vi = Vf.

• Consider a constant-volume system in 
contact with a heat bath.

• The 1st Law gives
W  = – ΔU + Q  < – ΔU + T ΔS.

• Now F = U – TS 
 ΔF = ΔU – T ΔS (for constant T).

Thus, W < – ΔF.
Since V is constant, W = 0, so that

(ΔF)T,V < 0, or F → Fmin.

Temperature bath

S

Since F is a state function, T and V do not have to be constant 
during the process, as long as Ti = Tf and Vi = Vf.
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Equilibrium when Ti = Tf and Pi = Pf.
• Consider a constant-pressure system 

in contact with a heat bath.
• The 1st Law gives

W  = – ΔU + Q  < – ΔU + T ΔS.
• For reversible work, W = P ΔV, 

so that P ΔV < – ΔU + T ΔS, or
0 > ΔU + P ΔV – T ΔS.

• Now G = U + PV – TS, 
 ΔG = ΔU + P ΔV – T ΔS  for constant

T and P, so that
(ΔG)T,P < 0, or G → Gmin.

Since G is a state function, T and P do not have to be constant
during the process, as long as Ti = Tf and Pi = Pf.

Temperature and 
pressure bath

SS
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Joule-Thomson Effect: Throttling process

• The Joule-Thomson effect is a continuous process in which the 
wall temperatures remain constant after equilibrium is reached.

• For a given mass of gas,  W  =  P2V2 – P1V1. 
• Since ΔU  = Q – W, qnd Q  =  0, U2 – U1 = – (P2V2 – P1V1).
• Thus U2 + P2V2 = U1 + P1V1, so that H2 =  H1 or ΔH =0.
• Joule-Thomson coeff. αJT = (∂T/∂P)H is positive for cooling.
• (∂T/∂P)H = – (∂T/∂H)P (∂H/∂P)T = – (∂H/∂P)T/CP.
• Now ΔH  =  T ΔS +  V ΔP  (∂H/∂P)T =   T(∂S/∂P)T +  V.
• Maxwell’s relations give (∂S/∂P)T = –(∂V/∂T)P , so that 

αJT = (∂T/∂P)H = [T(∂V/∂T)T – V]/CP .
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Second Virial Coefficient

• For one kmole, the equation of state may be written as
Pv = RT [1 + (B2/v) + (B3/v2) +…..],

where Bi(T) is the i’th virial coefficient. 

At sufficiently low densities P ≈ (RT/v)[1 + (B2/v)], 
where B2 is negative at low, and positive at high temperatures,
and dB2/dT is positive.

B2
T(K)

Positive, because
short-range repulsion
Increases P.

Negative, because
intermolecular attraction
decreases P. 
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Joule-Thomson Effect in Terms of B2
• Using the approximation for very low densities

P ≈ (RT/v)[1 + (B2/v)] ≈ (RT/v)[1 + (PB2/RT)],
where 1/v was replaced by P/RT in the second term.

• Thus, v = (RT/P) + B2,  and (∂v/∂T)P = (R/P) + dB2/dT,

so that = (∂T/∂P)H = [T(∂v/∂T)T – v]/cP ; i.e.
αJT = [T(dB2/dT) - B2]/cP .

Low temperatures B2 is negative and dB2/dT is positive, 
so that αJT is positive and cooling occurs.

Intermediate temperatures B2 is positive, but less than dB2/dT, 
so that αJT is positive and cooling occurs 

High temperatures B2 is positive, but greater than dB2/dT,
so that αJT is negative and warming occurs.
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The Linde Process of Liquefaction

T

P

Inversion 
curve

Curves of increasing H

Ti

Linde Process

Inversion temperatures

The coolant is used to cool 
the gas well below Ti.

Liquid H2 is used to cool He, and liquid air or N2 to cool H2.
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Comparison of U  and H

Internal Energy U Enthalpy H = U + PV

Always true dU = T dS – P dV dH = T dS + V dP

Reversible 
procedure

dU = dQ – P dV dH = dQ + V dP

Heat capacity CV = (U/∂T)V

= T(S/∂T)V

CP = (H∂/T)P

= T(S/∂T)P

Ideal gas U = U(T), U = CV T H = H(T)

Isochoric process U = Q = ∫CV(T) dT H = Q = ∫CP(T) dT

Adiabatic process U = – ∫P dV H =  ∫V dP

Joule & J-T effects αJ =  – [T(P/dT)V – P]/CV αJT = + [T(V/dT)P – V]/CP
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Difference of Heat Capacities
In general,   S =S(T,P)  dS = (∂S/∂T)PdT + (∂S/∂P)TdP.
Now CV = T(∂S/∂T)V , CP = T(∂S/∂T)P,
and (∂S/∂P)T = – (∂V/∂T)P

So that TdS = CPdT – T(∂V/∂T)PdP.

Now, CV = T(∂S/∂T)V =  CP – T(∂V/∂T)P(∂P/∂T)V.
Since (∂P/∂T)V = – (∂P/∂V)T(∂V/∂T)P,
CP = CV – T(∂V/∂T)P

2(∂P/∂V)T.
Now,  = (∂V/∂T)P / V  and κT = – (∂V/∂P)T / V, so that 

CP = CV + TV2/κ.
Notes
i. For an ideal gas, CP = CV + nR (Mayer’s equation).
ii. CP ≥ CV, with CP = CV only if  = 0 (e.g water at 3.98oC).
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Phase Equilibrium in a One-component System

• Consider a system at constant T and P, so that G → Gmin at 
equilibrium, so that dG = 0.

• Let g1 and g2 be the specific Gibbs functions of the phases 1 
and 2, with n1 + n2 = n (which is constant).

• G = n1g1 + n2g2, so that G = G(T, P, n1, n2),
Thus,

dG = [(∂G/∂T)dT + (∂G/∂P)dP + (∂G/∂n1)dn1 + (∂G/∂n2)dn2].

• Now dT = dP = 0, and (∂G/∂ni) = gi(T,P), where i =1 or 2.

• At equilibrium, dG = 0 , so that 0 = g1dn1 + g2dn2,
Since n is constant, dn1 = – dn2 , so that g1 = g2.

• This equation defines a phase-equilibrium curve.
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Phase Equilibrium Curve  1

• At point A, g1(T,P)  =  g2(T,P).
• At point B, g1 + dg1 =  g2 + dg2.
• Thus, dg1 (T,P) = dg2 (T,P).
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Clausius-Clapeyron Equation  1
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Clausius-Clapeyron Equation  2
• Vapor pressure curve

dP/dT = Δs/Δv = lV(T,P)/TΔv, where Δv = vV – vL.

• 1st assumption
vV » vL, so that Δv ≈ vV, and dP/dT ≈ lV/TvV.

• 2nd assumption
Assume ideal gas behavior (Pv = RT), and a latent heat lV that
depends only on temperature, so that

dP/dT ≈ lV/TvV ≈ lV(T)/(RT2/P) = PlV(T)/(RT2).
Thus, ∫dP/P = ln(P/P0) ≈ ∫LV(T) dT/(RT2). 

• 3rd assumption
Assume LV(T) is a constant, so that

ln(P/P0)  ≈  (lV/R) ∫dT/T2  = (lV/R)[(1/T0) – (1/T)].

Thus, P ≈ P0 exp{(lV/R)[(1/T0) – (1/T)]}.
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Phase Diagrams  1

• The Clausius-Clapeyron equation is most simply expressed as
dP/dT = Δs/Δv.

• For a first-order phase transition, discontinuities occur in both 
s and v, the former giving rise to the latent heat.

• For most materials, Δs and Δv are both positive in going from 
solid to liquid; water is an exception.

WaterWaterMost materialsMost materials
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All Liquids Banned from Airlines!

• For the first time, the Department of Homeland Security has 
deemed an entire state of matter to be a national security risk.
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Enthalpy and Change of Phase 
• Consider a reversible phase-change at constant T and P, 

which is associated with a latent heat L.

• The 1st Law, ΔU = Q – W,  may be written as ΔU = L – PΔV. 
• Thus, U2 – U1 = L – P(V2 – V1),

so that
L =  (U2 + PV2) – (U1 + PV1). 

• But the enthalpy H = U + PV, so that
L = H2 – H1. 

• Since U, P and V are functions of state, H must also be a  
function of state, so that

∫ dH = 0.oo
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Latent Heats at the Triple Point

• Consider a cyclic process 
around and close to the 
triple point.

• LS (sublimation) = Hv – Hs,
• LF (fusion) = Hl – Hs,
• LV (vaporization) = Hv – Hl,

where l is liquid, s is solid 
and v is vapor.

• Since ∫ dH = 0,
LS = LF + LV .

Also,  gs = gl = gv.

OO
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Entropy of EM Radiation  1 

• Internal energy U(V,T) = V u(T), where u(T) is the energy 
density, so that dU = V du + u dV.

• From EM theory, the radiation pressure is given by P = u(T)/3.

• Since T dS = dU + p dV,
dS = (V/T) du + (4/3)(u/T) dV. 
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Entropy of EM Radiation: Stefan-Boltzmann Law
Entropy of EM radiation

Stefan-Boltzmann Law
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Third Law of Thermodynamics 
• The 3rd Law fixes the absolute value of the entropy; i.e.

S → 0 as T → 0.
• Reif’s practical statement is

S → S0 as T → 0+,
where 0+,is of the order of 0.1 K, which is low enough for the 
electronic system to be in its ground state (Selec → 0), but high 
enough for the nuclear spin system to have its high T value.

The unattainability of absolute zero
Because of the 3rd Law, entropy-
temperature curves for a fixed 
external parameter, such as 
magnetic field, meet at T → 0.
Thus, it is impossible to reach T = 0 
in a finite number of steps.
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Consequences of the 3rd Law

2. (∂P/∂T)v and (∂P/∂T)P →  0 as T → 0.

1. Ci → 0 as T → 0, at least as fast as Tx , where x =1

•• Thus, Thus, Ci(T) cannot vary by a power of T, which is less than one.cannot vary by a power of T, which is less than one.

3. (Cp – Cv)/Cv → 0 as T → 0.
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Experimental Test of 3rd Law (Lange, 1924)
• Grey tin, a semiconductor, is stable below T0 = 292 K.
• White tin, a metallic conductor, is stable above T0.
• The rapid cooling of white tin to below T0 results in the 

formation of a metastable state of white tin;

• cw(T) and cg(T) must be measured between 0+ and T0 .


