Section B

- Orthographic projections: principle of first and third angle projection, orthographic views from isometric views of machine parts / components.
-Drawing of sectional views:- Coupling,
Crankshaft, Pulley, Piston and Connecting rod,
Cotter and Knuckle joint. Riveted Joint and
Welded Joint.

Orthographic Projections

- Orthographic projections are drawings where the projectors, the observer or station point remain parallel to each other and perpendicular to the plane of projection.
- Orthographic projections are further subdivided into axonome tric projections and multi-view projections.
- Effective in technical representation of objects

ORTHOGRAPHIC PROJECTIONS

- Orthographic projection $=2-\mathrm{D}$ representation of a 3-D object.

- Things to notice!
- The projection planes.
- The projectors.
- How surfaces A and B are projected.

Standard Views

- When constructing an orthographic projection, we need to include enough views to completely describe the true shape of the part.
- Complex part = more views
- Simple part = less views
- The standard views used in an orthographic projection are;
- Front view
- Top view
- Right side view
- The remaining 3 views usually don't add any new information.

Line Type and Weight

- There are four commonly used line types;
- continuous
- hidden
- center
- phantom
- Some lines are more important than others. Importance is indicated by line weight or thickness.
- The thicker the line, the more important it is.

Line Type and Weight

- Visible lines:
- Visible lines represent visible edges and boundaries.
- Continuous and thick (0.5-0.6 mm).
- Hidden lines:
- Hidden lines represent edges and boundaries that cannot be seen.
- Dashed and medium thick (0.35-0.45 mm).

Line Type and Weight

- Center lines:
- Represent axes of symmetry.
- Long dash - short dash and thin (0.3 mm).
- Phantom line:
- Phantom lines are used to indicate imaginary features.
- alternate positions of moving parts
- adjacent positions of related parts
- The line type is long dash - short dash - short dash and the line weight is usually thin (0.3 mm).

Methods of Drawing Orthographic Projections

First Angle Projections Method
Here views are drawn
by placing object
in $1^{\text {st }}$ Quadrant
(Fv above $X-y$, Tv below $X-y$)
SYMBOLIC
PRESENTATION OF BOTH METHODS WITH AN OBJECT STANDING ON HP (GROUND) ON IT'S BASE.

NOTE:-
HP term is used in $1^{\text {st }}$ Angle method \&
For the same Ground term is used in $3^{\text {rd }}$ Angle method of projections

Third Angle Projections Method Here views are drawn by placing object in $3^{\text {rd }}$ Quadrant.
(Tv above $X-y, F v$ below $X-y$)

Projection Symbol

- United States $=3$ rd angle projection
- Europe = 1st angle projection

Third Angle Projection Symbol (Our national standard)

First Angle Projection Symbol

First Angle Projection

How to draw plan and elevation?

Points to remember:

- The 'front view' (or elevation) is the view with maximum information.
- The 'plan' is below the 'elevation' (in projection).
- The 'end view' is placed on the right if viewed from left side of object and on the left if viewed from right side.
- 'End view' and plan face inwards from 'elevation'.

Third Angle Projection

How to draw plan and elevation?

In 3rd angle projection planes are transparent and objects are viewed through them

Points to remember:

- The 'front view' (or elevation) is the view with maximum information.
- The 'plan' is above the 'elevation' (in projection).
- The 'end view' is placed on the right if viewed from right side of object and on the left if viewed from left side.
- 'End view' and plan face outwards from 'elevation'.

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROJECTION METHOD

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROJECTION METHOD

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT BY FIRST ANGLE PROJECTION METHOD

PICTORIAL PRESENTATION IS GIVEN TOPVIEW
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROJECTION METHOD

Drawing of sectional views

- Coupling,
- Crankshaft,
- Pulley,
- Piston and Connecting rod,
- Cotter and Knuckle joint,
- Riveted Joint,
- Welded Joint.

Sectional View of Split Muff Coupling

(b)

Sectional View of Flanged Coupling

Sectional View of Oldham Coupling

(b)

Sectional View of V-Belt Pulley

(b)

Petrol Engine Connecting Rod

Parts list

Part No.	Name	Matl.	Qty.
1	Rod	FS	1
2	Cap	FS	1
3	Bearing brass	GM	2
4	Bearing bush	P Bronze	1
5	Bolt	MCS	2
6	Nut	MCS	2

Cotter joint with socket and spigot ends

Knuckle joint

Rivet Joint

Caulking

The outer edges of the plates used in boiler and other pressure vessels are bevelled. To produce air tight riveted joints, these bevelled edges of the plates are caulked. Caulking is an operation in which the outer bevelled edges of the plates are hammered and driven-in by a caulking tool. The caulking tool is in the form of a blunt edged chisel

Fullering

Similar to caulking, fullering is also used to produce air tight joints. Unlike the caulking tool, the width of the fullering tool is equal to the width of the bevelled edges of the plates

Caulking and fullering operations are carried out effectively by applying pneumatic pressure.

Types of Rivet Heads

Single riveted lap joint

Double riveted chain lap joint

Double riveted zig-zag lap joint

Single riveted, single strap butt joint

Single riveted, double strap butt joint

Double riveted, double strap butt joint

Double riveted, double strap zig-zag butt joint

Double strap diamond butt joint

Basic terms of a welded joint

Types of welded Joint

Types of joints
Position of weld symbol on drawing

(i) An arrow line (1) per joint,
(ii) A dual reference line, consisting of two parallel lines; one continuous and one dashed (2a, 2b) and
(iii) A certain number of dimensions (4) and conventional signs (3).

Elementary welding symbols

No.	Designation	Illustration	Symbol
1.	Butt weld between plates with raised edges (the raised edges being melted down completely)		八
2.	Square butt weld	आumbimm	11
3.	Single-V butt weld		\bigvee
4.	Single-bevel butt weld		1
5.	Single-V butt weld with broad root face	(17176NMMs	Y
6.	Single-bevel butt weld with broad root face	(217]	1
7.	Single-U butt weld (parallel or sloping sides)		Y
8.	Single-U butt weld		P
9.	Backing run; back or backing weld		\checkmark

Elementary welding symbols

10.	Fillet weld		
11.	Plug weld; plug or slot weld		
12.	Spot weld		

