Question Bank (Thermodynamics)

1. 5 Kg of air at $40^{\circ} \mathrm{C}$ and 1 bar is heated in a reversible non-flow constant pressure until the volume is doubled. Find (a) Change in volume (b) work done
(c) Change in internal energy and (d) Change in enthalpy.
2. 1 kg of gas expands at constant pressure from 0.085 m 3 to 0.13 m 3 . If the initial temperature of the gas is $225^{\circ} \mathrm{C}$, find the final temperature, net heat transfer, change in internal energy and the pressure of gas.
3. 3 kg of a gas at $75^{\circ} \mathrm{C}$ heated at constant volume until its pressure is 2 times is the initial pressure. Determine (i) the final temperature (ii) the heat transfer (iii) change in internal energy and (iv) change in enthalpy
4. A volume of 28 liters of gas at a temperature of $40^{\circ} \mathrm{C}$ and pressure of $200 \mathrm{kn} / \mathrm{m} 2$. It is heated at constant volume process till the temperature becomes $275^{\circ} \mathrm{C}$. Find (i) mass of the gas (ii) final pressure and (iii) change in enthalpy.
5. 1 kg of gas has a pressure volume and temperature of $2.5 \mathrm{bar}, 0.3 \mathrm{~m} 3$ and $100^{\circ} \mathrm{C}$ respectively. It expands isothermally in a cylinder to pressure of 0.75 bar. Estimate the work done by the gas, change in internal energy, and heat transferred.
6. (a) A heat engine operates between a source at $600^{\circ} \mathrm{C}$ and a sink at $60^{\circ} \mathrm{C}$ determine the least rate of heat rejection per KW net output of the engine.
(b)An inventor claims that is the proposed engine has the following specification: Power developed $=50 \mathrm{KW}$, fuel burnt $=3 \mathrm{Kg} / \mathrm{hr}$, calorific valve of the fuel $=75,000 \mathrm{kj} / \mathrm{kg}$, temperature limits $27^{\circ} \mathrm{C}$ and $627^{\circ} \mathrm{C}$.find out whether it is possible or not.
7. Draw and explain a) Heat engine b) refrigerator c) Heat pump d) give the application of entropy.
8. 0.2 kg of air at 1.5 bar and $27^{\circ} \mathrm{C}$ is compressed to a pressure of 15 bar according to the law pv1.25=constant, Determine work done, heat transfer, change in entropy.
9. (a) 10 kg of water $90^{\circ} \mathrm{C}$ mixes with 2.5 kg of water at $20^{\circ} \mathrm{C}$ under adiabatic conditions. Find the final temperature and entropy generation.
(b)In certain haet exchanger $45 \mathrm{~kg} / \mathrm{min}$ of water is to be heated from $60^{\circ} \mathrm{C}$ to $115^{\circ} \mathrm{C}$
by the hot gases which enter hart exchanger at $225^{\circ} \mathrm{C}$ at the flow rate of $90 \mathrm{~kg} / \mathrm{min}$. compute the net change of entropy assume specific heat for water and gases as 4.18 and $1.045 \mathrm{Kj} / \mathrm{kg}$
10. A cyclic heat engine operates between a source temperature $800^{\circ} \mathrm{C}$ and a sink temperature of 30°. What is the least rate of heat rejection per KW net output of the engine?
11. An inventor claims that is the proposed engine has the following specification: Power developed $=50 \mathrm{KW}$, fuel burnt $=3 \mathrm{Kg} / \mathrm{hr}$, calorific valve of the fuel=75, $000 \mathrm{kj} / \mathrm{kg}$, temperature limits $27^{\circ} \mathrm{C}$ and $627^{\circ} \mathrm{C}$.find out whether it is possible or not.
12. In a reheat steam cycle, the maximum steam temperature is limited to 773 K , the condenser pressure is 10 KPa and the quality at turbine exhaust is 0.8778 had been no reheat, the exhaust quality would have been 0.7592 . Assuming ideal processes, (i) reheat pressure (ii) the boiler pressure (iii) the cycle efficiency (iv) the steam rate.
13. A cyclic steam power plant is to be designed for a steam temperature at turbine inlet of 633 K and an exhaust pressure of 8 KPa . After isentropic expansion of steam in the turbine, the moisture content at the turbine exhaust is not to exceed 15%. Determine the greatest allowable steam pressure at the turbine.
14. 1 Kg of steam initially dry saturated at 1.1 MPa expands in a cylinder following the law PV1.13=C. The pressure at the end of expansion is 0.1 MPa . Determine
i. The final volume
ii. Final dryness fraction
iii. Work done
iv. The change in internal energy
v. The heat transferred
15. Steam at a pressure of 2.5 MPa and $500^{\circ} \mathrm{C}$ is expanded in a steam turbine to a pressure 0.05 MPa . Determine for Rankine cycle: i. The thermal efficiency of Rankine cycle.
16. [i]. Draw the P-T diagram of a pure substance and label all the phases and phase changes.
[ii]. What do you understand by dryness fraction? What is its importance?
[iii]. A rigid tank of 0.03 m 3 capacity contains wet vapour at 80 KPa . If the wet vapour mass is 12 Kg , Calculate the heat added and the quality of the mixture when the pressure inside the tank reaches 7 MPa .
17. [i]. what are the major problems of Carnot vapour cycle?
[ii]. what are the methods for improving the performance of Rankine cycle?
[iii]. Steam enters the turbine at 3 MPa and $400^{\circ} \mathrm{C}$ and is condensed at 10 KPa . Some quality of steam leaves the turbine at 0.6 MPa and enters open feed water heater. Compute the fraction of the steam extracted per kg of steam and cycle thermal efficiency.
18. The gas neon has a molecular weight of 20.183 and its critical temperature, pressure and volume are $46 \mathrm{~K}, 2.5 \mathrm{MPa}$ and $0.05 \mathrm{~m} 3 / \mathrm{Kg}$ mol. Reading from a compressibility chart for a reduced pressure if 2 and a reduced temperature of 1.2 ,the compressibility factor Z is 0.75 . What are the corresponding specific volume, pressure, temperature, and reduced volume?
19. Compare the specific volume of steam at 0.9 bar and 550 K using Vander Waals equation. Take critical temperature of steam is 647.3 K and Critical pressure is 220.9 bar.
20. A perfect gas of 0.5 Kg has a pressure of 300 KPa , a temperature of $100^{\circ} \mathrm{C}$, and a volume of 0.06 m 3 . The gas undergoes an irreversible adiabatic process to a final pressure of 400 KPa and final volume of 0.15 m 3 , work done on gas is 50 KJ . Find Cp, Cv.
21. A mixture of 2 Kg oxygen and 2 Kg Argon is in an insulated piston cylinder arrangement at $100 \mathrm{Kpa}, 300 \mathrm{~K}$. The piston now compresses the mixture to half its initial volume. Molecular weight of oxygen is 32 and for argon are 40 . Ratio of specific heats for oxygen is 1.39 and for argon is 1.667 .
22. A mixture of ideal gases consists of 3 Kg nitrogen and 5 Kg of carbon dioxide at a pressure of 300 KPa and a temperature of $20^{\circ} \mathrm{C}$, Find :
i). The mole fraction of each constituent
ii) The equivalent molecular weight of the mixture
iii) The equivalent gas constant of the mixture
iv) The partial pressures and the partial volumes
23. One Kg of air at $24^{\circ} \mathrm{C}, 70 \% \mathrm{RH}$ is mixed adiabatically with 2 Kg of air at $16^{\circ} \mathrm{C}, 10 \% \mathrm{RH}$. Determine final condition of the mixture.
24. The moist air is at $45^{\circ} \mathrm{C}$ dry bulb temperature and $30^{\circ} \mathrm{C}$ wet bulb temperature. Calculate
i. Vapour pressure,
ii. Dew point temperature,
iii. Specific humidity,
iv. Relative humidity,
v. Degree of saturation,
vi. Vapour density,
vii. Enthalpy of mixture.

(h)

25. Atmospheric air with barometric pressure of 1.01325 bar has $38^{\circ} \mathrm{C}$ dry bulb temperature and $28^{\circ} \mathrm{C}$ wet bulb temperature. Without the aid of psychrometric chart, determine humidity ratio, relative humidity and dew point temperature.
