PHASE DIAGRAMS

THEORY AND APPLICATIONS

Some basic concepts Phase

 A homogeneous region with distinct structure and physical properties

- In principle, can be isolated
- Can be solid, liquid or gas

Composition etc.)

- Phase Diagram
 - Representation of phases present under a set of conditions (P, T,

Concepts.....

Phase transformation

- Change from one phase to another
- E.g. $L \longrightarrow S, S \longrightarrow S$ etc.
- Occurs because energy change is negative/goes from high to low energy state
- Phase boundary

diagram

Boundary between phases in a phase

Gibb's Phase Rule

F = C - P +

P + F = C + P = number of phasesC=number of components F=number of degrees of freedom (number of independent variables)

Modified Gibbs Phase Rule (for incompressible system

P + F = C + 1

F = C - P + 1 Pressure is a constant variable

Application of the phase rule

At triple point, P=3, C=1, F=0 i.e. this is an invariant point

At phase boundary, P=2, C=1, F=1

In each phase, P=1, C=1, F=2

Construction of a simple phase diagram

- Conduct an experiment
- Take 10 metal samples(pure Cu, Cu-10%Ni, Cu-20%Ni, Cu-30%Ni....., pure Ni)
- Melt each sample and then let it solidify
- Record the cooling curves
- Note temperatures at which phase transformations occur

Binary isomorphous phase diagram

Notes

- This is an equilibrium phase diagram (slow cooling)
- The phase boundary which separates the L from the L+S region is called LIQUIDUS
- The phase boundary which separates the S from the L+S region is called SOLIDUS
- The horizontal (isothermal) line drawn at a specific temperature is called the TIE LINE
- The tie line can be meaningfully drawn only in a two-phase region
- The average composition of the alloy is C_o

Notes.....

The intersection of the tie line with the liquidus gives the composition of the liquid, C The intersection of the tie line with the solidus gives the composition of the solid, C_{S} By simple mass balance, $C_0 = f_S C_S + f_I C_I$ and $f_{S} + f_{I} = 1$ $C_{O} = f_{S} C_{S} + (1 - f_{S}) C_{I}$ $\frac{C_o - C_L}{C_s - C_L}$ Lever Rule

Some calculations

◆ In our diagram at T_3 , C_0 = A-40%B, C_S=A-90%B and C_L=A-11%B

◆ Therefore, f_S=29/79 or 37% and f_L=50/79 or 63%
◆ If we take an initial amount of alloy =100 g, amt. of solid=37 g (3.7 g of A and 33.4 g of B) and amt. of liquid=63 g (56.07 g of A and 6.93 g of B)

Eutectic microstructure Lamellar structure

aluminum-neodymium phase diagram. (Adapted from ASM Handbook, Vol. 3, Alloy Phase Diagrams, H. Baker, Editor, 1992. Reprinted by permission of ASM International, Materials

