
Cold work, recovery, recrystallization

Example:Single crystal

State I: Annealed metal

 $\rho_1 = 10^6$ /cm² Fairly strong and ductile

Low internal energy: stable

Cold worked

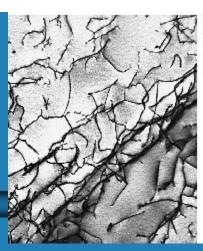
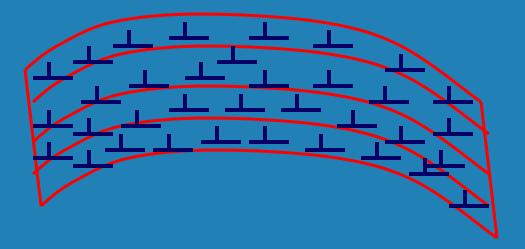
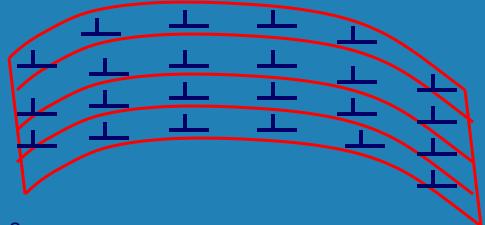



FIGURE 4.6 A transmission electron micrograph of a titanium alloy in which the dark lines are dislocations, 51,450×. (Courtesy of M. R. Plichta, Michigan Technological University.)

State II:Cold worked metal


 $\rho_1 = 10^{10-12} / \text{cm}^2$

Very strong and brittle

High internal energy: not very stable

Heated at ~0.5 T_m

State III:Recovered metal

 $\rho_1 = 10^8 / \text{cm}^2$

Dislocation alignment:

Strong and less brittle Compared to state II

Polygonization (one recovery process)

Internal energy is lowered

Recall what a grain boundary is

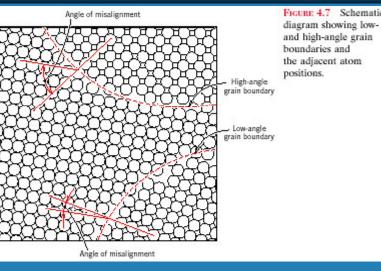


FIGURE 4.7 Schematic

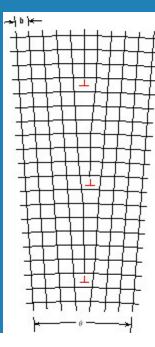
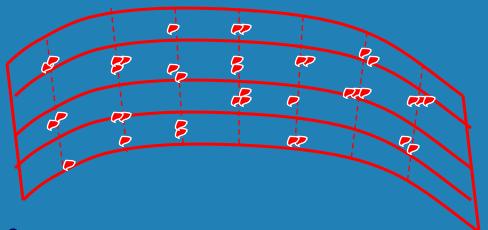
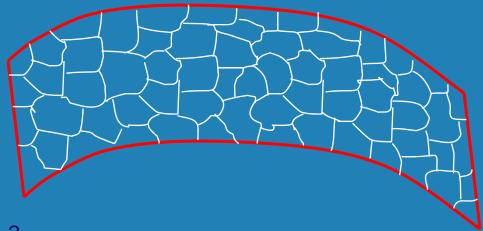



FIGURE 4.8 Demonstration of how a tilt boundary having an angle of misorientation θ results from an alignment of edge dislocations.

Heated at ~0.5 T_m

State IV:Recrystallization begins


ρ₁= 10⁶/cm²
New strain free grains are formed by nucleation ternal er

Stronger than state I and ductile

nucleationnternal energy is further lowered

Heated at ~0.5 T_m

State V:Recrystallization complete

 ρ_{\perp} = 10⁶/cm² Recrystallized

Stronger than state I and ductile

In summary

- We started with a single crystal and ended with a polycrystal : grain refinement
- A The driving force for this process is decrease in internal energy

For a polycrystals (in real life)

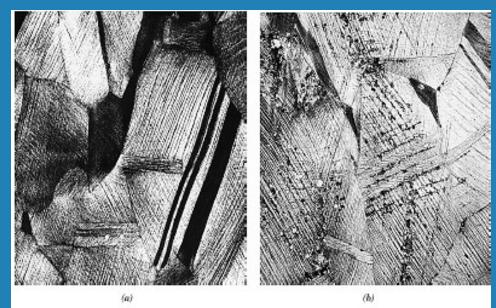


FIGURE 7.21 Photomicrographs showing several stages of the recrystallization and grain growth of brass. (a) Cold-worked (33%CW) grain structure. (b) Initial stage of recrystallization after heating 3 s at 580°C (1075°F); the very small grains are those that have recrystallized. (c) Partial replacement of cold-worked grains by recrystallized ones (4 s at 580°C). (d) Complete recrystallization (8 s at 580°C). (e) Grain growth after 15 min at 580°C. (f) Grain growth after 10 min at 700°C (1290°F). All photomicrographs 75×. (Photomicrographs courtesy of J. E. Burke, General Electric Company.)

Cold worked

Initial recrystallization

Some facts

- Nithout a minimum amount of cold work (5-15%), there is no recrystallization
- After the metal is completely recrystallized, grain growth occurs
- ର Grain growth law at a constant temperature

$$\begin{aligned} &D_i^{\ 2} - D_0^{\ 2} = Kt \\ D_i = \text{final grain size} & D_0 = \text{initial grain size} \\ & t = \text{time} \end{aligned}$$