
PHASE CHANGES OF WATER

• Gibbs phase rule
f f• Thermodynamic surface for water

• Unusual properties of water

Gibbs Phase RuleGibbs Phase Rule

For a closed, homogeneous system of constant composition (e.g., an ideal gas), we requ
parameters of state (for example, T and p) in order to describe it. For a heterogeneous syp ( p p) g y
in equilibrium, consisting of one component (e.g., water substance) and two phases (e.g.
and vapour), we require only one parameter of state (for example, T).

This example may be expressed more generally in terms of Gibb’s phase rule:This example may be expressed more generally in terms of Gibb s phase rule:

v = c − φ + 2
where ν=number of independent state variables at equilibrium

c=number of components
φ =number of phases

We assume here that the masses of the components and phases are specified. As an ex
equilibrium between a pure plane surface of water and its vapour, we require only one sta



state variable, T, say. The equilibrium vapour pressure is a function of T, i.e., es=es(T).

Thermodynamic Surface for WaterThermodynamic Surface for Water

The thermodynamic surface for water is shown in the diagram below (from Iribarne and
Godson, “Atmospheric Thermodynamics”, page 60):



A projection of this surface onto the p-T plane is shown in the accompanying diagram:

Note the supercooled water-vapour equilibrium which is not shown on the 3D thermodyna
surface.

The following data, relating to this phase diagram, may be useful:

LATENT HEATSLATENT HEATS
lv=2.501×106 Jkg-1                      Note that ls=lv+lf and that the latent heats are functions of
lf=0.334×106 Jkg-1                      temperature (Kirchoff’s law). (v=vapourization, f=fusion, 
ls=2.835×106 Jkg-1                       s=sublimation)



TRIPLE POINT
This is the point at which all three phases of water substance co-exist in equilibrium. There
no independent (variable) parameters of state. The state variables are all specified (hence
term “point”) as given belowterm point”), as given below.

pt=0.6107 kPa (~35 km up in the atmosphere)
Tt=273.16 Kt
vs,t=1.091×10-3 m3 kg-1

vl,t=1.000×10-3 m3 kg-1

vv,t=206 m3 kg-1

Note: the specific volume of ice is larger than the specific volume of liquid water!Note: the specific volume of ice is larger than the specific volume of liquid water!

CRITICAL POINT
This is the point at which the distinction between liquid and vapour (the meniscus) disappe

pc=218.8 atm
Tc=647 K
v =3 07×10-3 m3 kg-1vc 3.07×10 m kg

UNUSUAL PROPERTIES OF WATER:

1. Maximum density at 4oC: Water has its maximum density at 4oC rather than at the fr
point as is the case for most other liquids. Cooling below this point causes the density to d
rather than increase. The explanation of this phenomenon has to do with the competing ef



which occur just above freezing. First, the density tends to increase as the temperature dr
because of the reduction in thermal agitation of the molecules. However, as one approach
freezing point, ice-like molecular clusters begin to form in the liquid. These have a lowerg p g q
density because of the less compact molecular packing in the crystal structure of ice 
(remember…ice floats!). Far from the freezing point, the first effect predominates. As the
temperature approaches the freezing point, the second effect becomes dominant and the
density decreasesdensity decreases.

The consequence of this property of water is that deep bodies of fresh water must cool to 
before their surface can cool towards the freezing point. Further cooling leads to ice forma
on top of the liquid rather than at the bottom (which is what would occur if the maximum
density occurred at the freezing point). This has enormous implications for the survival of 
amphibians, and plant life over the winter. It also has implications for skating on natural ic

2. Solid form is less dense than liquid form

This is a most unusual property, some of whose consequences are icebergs, jökulhlaups 
f )outburst floods: images ), arctic pack ice, and the unusual way in which graupel and smal

melt. Ice is also unusual as a solid since most environmental ice exists at a high homolog
temperature (this is the ratio of the actual temperature to the melting point temperature). 
Most other natural solids exist well below their melting point.Most other natural solids exist well below their melting point.



3. Greatest Specific Heat among Liquids

Water:  4.2×103 Jkg-1 K-1g
Ethyl alcohol: 2.5×103 Jkg-1 K-1

Mercury: 1.3×102 Jkg-1 K-1

Because of its high specific heat capacity, bodies of water are good heat reservoirs. Our 
ld’ h d ti ff t li tworld’s oceans have a moderating effect on climate.

4. Greatest Latent Heat of Vapourization amongst Liquids

Water:  2.5×106 Jkg-1

Ethyl alcohol: 0.86×106 Jkg-1

Mercury: 0.3×106 Jkg-1

The latent heat of condensation plays a very important role in cloud and storm formation a
drives much of the dynamics of the atmosphere.

5. Greatest Thermal Conductivity of all Liquids (except liquid metals)

Water:  5.95×10-5 Wm-1K-1

Ethyl alcohol: 1 78×10-5 Wm-1K-1Ethyl alcohol: 1.78×10 Wm K
Mercury: 8×10-4 Wm-1K-1

Water isn’t a particularly good insulator (you get cold while swimming!) Hence wet clothes 



wet insulation in your house provide poor protection from the cold.

6. Greatest Dielectric Constant of (almost) all Substances
11 1Hydrocyanic acid: 102×10-11 Fm-1

Water: 71×10-11 Fm-1

Ethyl Alcohol: 22×10-11 Fm-1

Glass: 6×10-11 Fm-1Glass: 6 10 Fm
Ebonite: 2×10-11 Fm-1

Ice: 2×10-11 Fm-1

Air: 0.9×10-11 Fm-1
1 q1q2

The dielectric constant, ε, enters Coulomb’s law in the denominator:
The higher the dielectric constant the smaller the force between two oppositely charged io
solution, so dissolved salts tend to stay dissolved in water. The result is that water is almo

F =
1
ε

q1q2

r2

, y
universal solvent, a rather important result for atmospheric and oceanic chemistry.

7. Greatest Surface Tension of any Liquid except Mercury
Water: 7 3×10-2 Nm-1Water: 7.3×10 2 Nm 1

Ethyl Alcohol: 2.2×10-2 Nm-1

Mercury: 4.9×10-1 Nm-1

One of the consequences of this is good water retention in soils. Also raindrops are essen
spherical up to about 1 mm diameter. How does water get to the top of tall trees when the
height of a water barometer is about 10m?



WATER VAPOUR

• Clausius-Clapeyron equationp y q
• Humidity variables

Clausius-Clapeyron EquationClausius Clapeyron Equation

We wish to determine the equilibrium pressure along the three phase-equilibrium curves
(see last figure). As an example of the method, consider the liquid-vapour equilibrium
k t h d b lsketched below:

Benoit-Pierre-Emile Clapeyron (1799-1864) was a French civil engineer who worked on the design and construction 
engines. He is best known for the equation describing the equilibrium vapour pressure over a liquid. The equation was 
until Clausius and Kelvin revealed its true significance for thermodynamics.



Because the phase change occurs at constant pressure and temperature, the specific Gi
free energy in the liquid and vapour must be equal. Hence at point 1:

gl = gv (8.1)

and at point 2:and at point 2:

gl + dgl = gv + dgv
(8.2)

Subtracting Eq. (8.1) from (8.2) we have:

d ddgl = dgv (8.3)

which may be written using the combined first and second laws as:y g

−sldT + vldp = −svdT + vvdp (8.4)

Hence, (8.5)

where the last substitution comes from Tds=δq, with the heat involved being the latent hea



Assuming that vv >> vl, (i.e., the density of liquid water is much greater than the density o
water vapour…a very reasonable approximation) this becomes:

d ldp
dT

≅
lv

Tvv
(8.6)

And using the gas law for water vapour, pvv=RvT, (where the subscript v here means “va
and not constant volume!) we can substitute in for the specific volume, vv,, to get:

ln lpd (8 7)
2

ln
TR
l

dT
pd

v

v= (8.7)

Eq (8 7) is the Clausius-Clapeyron equation This may be integrated to obtain p(T) usEq. (8.7) is the Clausius-Clapeyron equation. This may be integrated to obtain p(T) us
lv(T) from Kirchoff’s equation. However, it is more common to find empirical fits to the
observed equilibrium vapour pressure data. Two examples are given below:

O OLOWE FORMULA   (Lowe, P.R. 1977: An approximating polynomial for the computation of saturation vapour pressure. 
Journal of Applied Meteorology, 16, 100-103.)

)))))((((( 54321 TaTaTaTaTaTap o ++++++= (8.8)

h th ffi i t i i th N t th t th t d f l ti f thwhere the coefficients are given in the paper. Note that the nested formulation for the
sixth order polynomial is more efficient to compute than the usual polynomial formulation
The paper contains versions for T expressed in either Kelvin or Celsius degrees.



BOLTON FORMULA (Bolton, D., 1980: The computation of equivalent potential temperature. Monthly Weather Review, 10
1046-1053.)

⎟
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exp6112.0
T

p (8.9)

where T is the temperature in degrees Celsius, and p is expressed in kPa.

It is important to note that along the liquid-water equilibrium curve, the pressure is solely a
Function of temperature, and that that function is (approximately) exponential. This has 
Enormous implications for the hydrological cycle in our atmosphere, as we’ll see.p y g y p ,

THE VAPOUR-ICE EQUILIBRIUM CURVE
Similar results can be obtained for the vapour-ice equilibrium. As an exercise, for liquid-ice
equilibrium go through the derivation of the Clausius Clapeyron equation (Eq’s 8 1 8 5)equilibrium, go through the derivation of the Clausius-Clapeyron equation (Eq s 8.1-8.5),
making the necessary changes, and show that:

1134 −⋅−= Katmdp (8.10)134 ⋅−= Katm
dT

(8.10)

Note that the negative sign arises because, for water, the specific volume of the liquid is
smaller than the specific volume of the ice. Hence as the equilibrium pressure increasessmaller than the specific volume of the ice. Hence as the equilibrium pressure increases
equilibrium temperature (i.e., the melting point) is reduced. This is visible on the triple
point diagram earlier in your notes.



Sample problem

Q: What melting point reduction is produced by a skate blade?g y

A: We need first to calculate the pressure produced by the blade. Let us assume a 100 kg
individual is standing on a single blade. This produces a force of 103 N. The contact area 
blade with the ice needs to be measured but I would estimate about 1 cm2 or 10-4 m2 Thblade with the ice needs to be measured, but I would estimate about 1 cm2 or 10 4 m2 . Th
gives rise to a pressure of 107 Pa or about 102 atm. So according to Eq. (8.10), the meltin
point reduction would be about 1K. 

It may be noted that this pressure (and melting point reduction) are similar to those that w
occur at the base of a 1 km thick ice sheet.



HUMIDITY VARIABLES

We will introduce some new notation at this stage in order to talk about humidity in theg y
atmosphere: 

e water vapour pressure (partial pressure of water vapour in moist air)
es saturation vapour pressure with respect to water (equilibrium vapour press
ei saturation vapour pressure with respect to ice (equilibrium vapour pressure
pd partial pressure of dry air
p total pressure = pd + ep total pressure  pd + e

The table below shows how well water vapour obeys the ideal gas law:

T(oC)
-50 1.000

TR
ve

v

s

0 0.9995
50 0.9961

It may seem surprising that water vapour is “most ideal” at the lowest temperature. The 
has to do with the exponential variation of the saturation vapour pressure with temperatu
with the result that the mean free path in saturated vapour at –50oC is higher than in sat



vapour at +50oC. The molecules, being further apart, behave in a “more ideal” fashion.

We will therefore use the ideal gas law for water vapour and write it as follows:g p

TRTRev dvv ε
1

== (8.11)

where R =461 5 Jkg-1 K-1 and ε=R /R =M /M =0 622 is the ratio of the gas constantswhere Rv=461.5 Jkg 1 K 1 and ε=Rd/Rv=Mv/Md=0.622 is the ratio of the gas constants.
Actually, when dry air and water vapour are mixed the partial pressure of the vapour is ch
slightly due to non-ideal behaviour. However, the error in ignoring this effect is always les
than 1% over the meteorological range of conditions, so we will ignore it. 

Meteorologists use seven (!) different variables to express the amount of water vapour in
some will be familiar, others not. They are enumerated and listed below:

1) Specific Humidity
q ≡

ρv

ρ
where ρ = ρv + ρd (8.12)

We can use the specific humidity to determine the specific gas constant for moist air. Rec
from our notes that the specific gas constant for a mixture is the mass-weighted mean sp
gas constant of the components:gas constant of the components:

R =
ρd Rd + ρvRv

ρ
= 1+ q 1

ε
−1

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Rd ≅ (1+ 0.61q)Rd (8.13)



2) Virtual Temperature

The ideal gas law for moist air can be written in terms of the specific gas constant for mog p g
air (Eq. 8.13): pv = (1+ 0.61q)RdT (8.14)

This equation can be interpreted as the ideal gas law for dry air with the same pressure aThis equation can be interpreted as the ideal gas law for dry air with the same pressure a
density as the moist air, but with a temperature of:

Tv = (1+ 0.61q)T (8.15)
v ( q)

The temperature, Tv, is called the virtual temperature. In words, it is the temperature w
dry air must have in order to have the same density as moist air, at the same pressure. I

l t th t th t t f th i t i i 0 O i li ti f thialways greater that the temperature of the moist air since q>0. One implication of this re
that adding water vapour to dry air increases its buoyancy (and its specific volume). This
paradoxical result inasmuch as one might think that by adding water vapour to dry air on
would increase its density and make it heavier. This would be true only in a constant voly y
process. In a constant pressure process, the added water vapour molecules displace he
Oxygen and Nitrogen molecules (remember Avogadro’s principle), and hence the moist 
is less dense. So a cold air parcel in a warm environment can still rise if it is sufficiently m
For example a saturated air parcel at 20oC and 100 kPa has a virtual temperature of 22For example, a saturated air parcel at 20oC and 100 kPa has a virtual temperature of 22
Hence it will rise in dry environments that have temperatures less than 22.7oC.



Combining Eq’s (8.14) and (8.15), the ideal gas law for moist air may be written:

pv = RdT (8.16)pv RdTv

which looks just like the ideal gas law for dry air, only we’ve redefined the temperature.

3) Mixing Ratio

ρv qr ≡
ρv

ρd

=
q

1− q
(8.17)

Since r and q are both less than about 0.04 in our atmosphere, for most purposes r≈q.q p , p p q

4) Partial Pressure of Water Vapour

The ideal gas law for water vapour may be written asThe ideal gas law for water vapour may be written as 

e = ρvRvT (8.18)

where e is the partial pressure of the vapour. For dry air, the ideal gas law iswhere e is the partial pressure of the vapour. For dry air, the ideal gas law is

pd = ρd RdT (8.19)



Taking the ratio leads to: 

e =
rpd

ε
≈

rp
ε

(8.20)
ε ε

We can therefore express the vapour pressure, e, in terms of the observables r and p.

5) Mole Fraction)

Nv ≡
nv

nv + nd
(8.21)

6) Absolute Humidity

Absolute humidity is just another name for the vapour density ρAbsolute humidity is just another name for the vapour density, ρv.

7) Relative Humidity
u ≡

e
≈

r
(8.22)es rs
( )

where the subscript s denotes the saturation value. Typically, the relative humidity is
multiplied by 100 and expressed as a percent. The supersaturation is defined by s≡u-1. In 
clean air the supersaturation can reach about 8 (800%) before the vapour begins to condeclean air the supersaturation can reach about 8 (800%) before the vapour begins to conde
droplets.

We will encounter additional humidity variables later in the course.



MOIST AIR

• Thermodynamic properties of moist airy p p
• Thermodynamic properties of cloudy air

Thermodynamic Properties of Moist Airy p

1) Specific Heat Capacity of Moist Air

Since the H2O molecule is triatomic it has six degrees of freedom and kinetic theory wouSince the H2O molecule is triatomic, it has six degrees of freedom and kinetic theory wou
lead to the following predictions for the specific heat capacities of pure water vapour:

cv =
6
2

Rv =1.38 ×103 Jkg−1K−1
vv 2 v g

cpv
=

8
2

Rv =1.85 ×103 Jkg−1K−1

Note the extra subscripts for Vapour

2
These values are in very close agreement with experimental ones.

In order to determine the specific heat capacity of moist air at constant pressure (i.e., a m
f t d d i ) id 1 k f i t i i ti f k f tof water vapour and dry air), we consider 1 kg of moist air consisting of mv kg of water vap

and 1-mv kg of dry air. Then the heat required at constant pressure to raise the temperatu
the air by dT is:



δq = mvcpv
dT + (1− mv )cpd

dT = cpdT (9.1)

where c is the specific heat capacity of the moist air that we wish to determinewhere cp is the specific heat capacity of the moist air that we wish to determine.

Because we are considering a unit mass of moist air, the mass of water vapour equals the
specific humidity q (not to be confused with HEAT!!). Hence, Eq. (9.1) may be simplified a

ittre-written:

cp = qcpv
+ (1− q)cpd (9.2)

Rearrangement leads to:

c = c 1+ q
cpv

− cpd
⎛ 
⎜ ⎜ 

⎞ 
⎟ ⎟ ≅ c (1+ 0 87q) (9.3)cp = cpd

1+ q
cpd⎝ 

⎜ ⎜ 
⎠ 
⎟ ⎟ ≅ cpd

(1+ 0.87q) ( )

Similarly one may show that:

cv ≅ cvd
(1+ 0.97q) (9.4)

Also,

κ =
R
cp

≅ κd (1− 0.26q) (9.5)



γ =
cp

cv

≅ γd (1− 0.12q) (9.6)

θm = T 100
p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

κ d (1−0.26q )

(9.7)
p⎝ ⎠ 

However, in meteorological practice θm and θ never differ by more than about 0.1oC. So w
generally treat unsaturated adiabatic ascent of moist air as if it were dry adiabatic ascengenerally treat unsaturated, adiabatic ascent of moist air as if it were dry, adiabatic ascen

2)   SPECIFIC INTERNAL ENERGY, SPECIFIC ENTHALPY, AND SPECIFIC ENTROPY
OF MOIST AIR

The formulae remain the same as for dry air, but the specific heat capacities and the gas
which are used must, strictly speaking, be those for moist air. However, dry air values ca
used while incurring little error.g

THERMODYNAMIC PROPERTIES OF CLOUDY AIR

Typically, the heat capacity of liquid water in cloudy air can be ignored because 
mixing ratio of liquid water is of the order of 10-3 . However, the release of the
latent heat of condensation is very important thermodynamically and must be



accounted for. Recalling that the change in enthalpy equals the heat added to a system a
constant pressure, and keeping in mind that phase changes in cloudy air occur at constan
total pressure, we see that we need to add a term to dh to account for the latent heat ofp
condensation:

dh ≅ cpdT + lvdrs (9.8)

where, strictly speaking, cp is the mean specific heat capacity for the cloudy air. However
one may use the specific heat capacity for moist air or even for dry air without a significa
penalty.

Similarly,
du ≅ cvdT + lvdrs (9.9)

ds ≅ c d lnT − Rd ln p +
lvdrs (9.10)ds ≅ cpd lnT Rd ln p +
T

( )



AEROLOGICAL DIAGRAMS--THERMODYNAMICAL CHARTS

• Ideal properties of aerological diagrams
C• Clapeyron diagrams

• Emagram (Skew T-ln p diagram)

Ideal Properties of Aerological Diagrams

Aerological diagrams are tools that allow thermodynamic parameters to be determined an
calculations to be made without the use of formulae The results are obtained graphicallycalculations to be made without the use of formulae. The results are obtained graphically 
instead. For example, on a Clapeyron diagram (p-v graph), the area enclosed by a cycle i
work done,
If the diagram has been suitably calibrated, the work done in a cycle can be determined b

pdv.∫
g y y

measuring the area inside the process curve, avoiding the need to calculate the integral.

A Clapeyron diagram is sketched below, along with an isobar, an isotherm, and a dry adia

(pvγ = const)



The advantages of this diagram for meteorological applications are:

i It is area equivalent This term means that area on the diagram is proportional to woi. It is area equivalent. This term means that area on the diagram is proportional to wo
ii. The isobars are straight lines.
iii. The vertical coordinate, -p, increases with height.

The disadvantages of this diagram for meteorological applications are:The disadvantages of this diagram for meteorological applications are:

i. The adiabats and isotherms are not straight lines.
ii. The angle between the adiabats and the isotherms is small. This means that it will ha

iti it f f i t bilit lsensitivity for performing stability analyses.
iii. The isotherms and the adiabats are not congruent. This means, for example, that you

cannot obtain the entire set of isotherms simply by translating a single isotherm.



Aside on Area Equivalence

We know that area on the Clapeyron diagram is proportional to work done. In ordp y g p p
determine whether this is so for any other thermodynamic diagram (that is, wheth
this new diagram is area equivalent), we consider the transformation from the
Clapeyron diagram (p,v) to the new diagram (x,y) illustrated below:

The transformation equations are:

)(
),(

vpyy
vpxx =

leading to: 
),( vpyy =
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v
xpd

p
xxd vvv

∂
∂

+
∂
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∂
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∂
∂
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The area element transformation from dA to dB is thus given by:

vdpJdydxdAd vvvvv
×=×=

where:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
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∂

−
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∂
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∂
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∂
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x
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yxJ
),(
),(

is the Jacobian of the transformation. The (x,y) diagram is area equivalent if the Jacobian
constant. As an exercise, show that J=R for the Emagram (see below). 



EMAGRAM (SKEW T-lnP DIAGRAM)

The coordinates of the Emagram (Energy per unit mass diagram) are T and –ln p.g ( gy g )
Thus, the isotherms and isobars are straight lines but the adiabats are curved, being loga
(logarithmically differentiate the definition of potential temperature (4.10) in order to show 
The Emagram is area equivalent. This result can be shown by considering the Jacobian o
Transformation (see above) or more directly as follows:Transformation (see above) or more directly as follows:

∫ ∫ ∫ ∫ ∫ −=−=−= )ln()( pTdRvdpvdppvdpdv (10.1)

where the second equality arises from the fact that d(pv) is a perfect differential, and the t
equality can be obtained using the ideal gas law.

The angle between the adiabats and isotherms on an Emagram is variable but close to 45The angle between the adiabats and isotherms on an Emagram is variable but close to 45
angle can be increased to about 90o , however, by rotating the temperature axis clockwise
through 45o (see following sketch). The resulting skewed diagram is shown on the right in
figure below. As we shall see, it is similar to the tephigram. However, on the skew T-ln p
di th di b t d hil th T hi th i b d ( lth hdiagram the adiabats are curved, while on the Tephigram the isobars are curved (although
by much) and the adiabats are straight.



STÜVE DIAGRAM

The Stüve diagram is one in which the coordinates are -pκ and T. It has the unique prope
That isobars isotherms and adiabats are all straight lines The angle between the isotherThat isobars, isotherms and adiabats are all straight lines. The angle between the isother
Adiabats is variable but about 45o . However, it is not area equivalent (although the error
More than about 25% over the meteorological range of conditions). It is mentioned here
Because it is still in use in the U.S. See, for example, http://dstreme.comet.ucar.edu/stuv
An example for Great Falls, Montana, is given below:





THE TEPHIGRAM

All of the disadvantages of the Clapeyron diagram for meteorological use concern the isot
d di b t ( ifi ll th f t th t th t li d th t th l b t thand adiabats (specifically the fact that they are not linear, and that the angle between them

small). In order to overcome these deficiencies, it would seem to make sense to construct
diagram in which T and θ are the coordinates. Unfortunately, such a thermodynamic diagr
would not be area equivalent. However, by using lnθ rather than θ as the coordinate, it isq , y g ,
possible to make it area equivalent. We can demonstrate this as follows. 

From the first law, the work performed in a reversible cycle can be determined from:

∫ ∫ ∫−== pdvTdsdu0 (11.1)

Recalling that, for an ideal gas, ds=cpdlnθ, this leads to:

∫ ∫= θlnTdcpdv p (11.2)

Thus to make the diagram area equivalent we could use the coordinates T and lnθ . Beca
the Greek letter φ was at one time used to denote specific enthalpy, the diagram was 
originally called the T-φ diagram or tephigram for short. The name has stuck. 

Isobars, adiabats, and isotherms on the tephigram are illustrated as follows:



The disadvantages of the tephigram are few and either rectifiable or unimportant. First, 
Isobars are not straight lines. However, their curvature is quite small over the range of
Meteorological interest. Second, the ordinate is not proportional to height. However, this
Deficiency can easily be rectified by rotating the diagram through an angle of about 45o
until the isobars are approximately horizontal.

ISOBARS
Differentiating the definition of potential temperature, we have:

constpT +−= lnlnln κθ (11.3)constpT +lnlnln κθ ( )
Since the isobars are curves for which p is constant, the relation between lnθ and T alo
isobars is logarithmic. However, their curvature is small over the meteorological range o
temperature. Note that the isobars are congruent with respect to displacement along lnθ



ISOTHERMS AND ADIABATS

These are simply coordinate lines on the tephigram. Consequently, they are straight and
di l t h thperpendicular to each other.

EQUISATURATED CURVES

These curves are obtained by setting:

const
T

Ter s
s ==

)(
)(ε

(11.4)Tep s− )( ( )

Proceeding along an isotherm towards lower pressure, rs must increase. Also proceeding
along an isobar towards higher temperature, rs must increase. Hence, the equisaturatedalong an isobar towards higher temperature, rs must increase. Hence, the equisaturated 
must be tilted to the left of the isotherms, as in the sketch below:



SATURATED ADIABATS

The equation for the saturated adiabats can be obtained by integrating the third version o
th fi t l (E 4 12) t i ldthe first law (Eq. 4.12) to yield:

const
pT

lTec vs
p =+

)(ln εθ (11.5)p

and, from the definition of potential temperature, p may be written as:

1

⎞⎛ κ

θ
100 ⎟

⎠
⎞

⎜
⎝
⎛=
Tp (11.6)

Substituting Eq. 11.6 into Eq. 11.5 yields a nonlinear equation for lnθ in terms of T.

Because of the release of latent heat, the slope of saturated adiabats will be less than the 
dry adiabats. Moreover, the saturated adiabats must cut across equisaturated curves since
saturation mixing ratio diminishes as a saturated air parcel ascends Hence locally the sasaturation mixing ratio diminishes as a saturated air parcel ascends. Hence, locally, the sa
adiabats lie between equisaturated curves and dry adiabats. Strictly speaking, Eq. 11.5 is 
incorrect because it doesn’t account for the sensible heat of the condensed liquid, which m
remain in the air parcel if adiabatic conditions are maintained. Consequently, Eq. 11.5 app
to a scenario in which the condensed liquid is instantly removed from the parcel. Because 
a process is not strictly adiabatic, the resulting curves should be called pseudoadiabats r
than saturated adiabats. They are nevertheless called by both names.



NIFTY CALCULATIONS YOU CAN MAKE USING THE TEPHIGRAM INSTEAD OF
A CALCULATOR

Q1: Find the mixing ratio, r, from the relative humidity, u (expressed as a fraction), g
temperature and pressure (T,p).

Procedure (see diagram below):Procedure (see diagram below):

• Starting at point (T,p), follow an equisaturated curve to p=100u kPa (r,rs ,u are all consta
• From this point, follow an isotherm back down to 100 kPa (r, es are both constant)
• The mixing ratio of the equisaturated curve that passes through this final point, where th

saturated, is the mixing ratio of the initial point.

Q2: Find the saturation vapour pressure given T, p.

Procedure:
• Starting at (T,p), follow an isotherm to 100ε=62.2 kPa (i.e., es is conserved along the iso
• The value of rs at this point in g/kg equals the saturation vapour pressure in mb.


