ME Gate 2012

Q. No. 1 to 25 Carry One Mark Each

1. Which one of the following is NOT a decision taken during the aggregate production planning stage?
(A) Scheduling of machines
(B) Amount of labour to be committed
(C) Rate at which production should happen
(D) Inventory to be carried forward

Answer: - (B)
2. A CNC vertical milling machine has to cut a straight slot of 10 mm width and 2 mm depth by a cutter of 10 mm diameter between points $(0,0)$ and $(100,100)$ on the XY plane (dimensions in mm). The feed rate used for milling is $50 \mathrm{~mm} / \mathrm{min}$. milling time for the slot (in seconds) is
(A) 120
(B) 170
(C) 180
(D) 240

Answer: - (A)
3. A solid cylinder of diameter 100 mm and height 50 mm is forged between two frictionless flat dies to a height of 25 mm . The percentage change in diameter is
(A) 0
(B) 2.07
(C) 20.7
(D) 41.4

Answer: - (D)
Exp:- From incompressibility we get
$\pi d_{1}^{2} h_{1}=\pi d h_{1}$
$d_{2}=d_{1} x$
h_{1}
$\mathrm{~h}_{2}$
$\mathrm{d}_{2}=100 \times 5025=141.42$

Percentage change in diameter $=d_{2}-d_{1} \times 100=41.42 \%$
d1
4. The velocity triangles at the inlet and exit of the rotor of a turbo machine are shown. V denotes the absolute velocity of the fluid, W denotes the relative velocity of the fluid, and U denotes the blade velocity. Subscripts 1 and 2 refer to inlet and outlet respectively. If $\mathrm{V}_{2}=\mathrm{W}_{1}$ and $\mathrm{V}_{1}=\mathrm{W}_{2}$, then the degree of reaction is

(A) 0
(B) 1
(C) 0.5
(D) 0.25

Answer: - (C)
5. Which one of the following configurations has the highest fin effectiveness?
(A) Thin, closely spaced fins
(B) Thin, widely spaced fins
(C) Thick widely spaced fins
(D) Thick, closely spaced fins

Answer: - (A)
6. An ideal gas of mass m and temperature T_{1} undergoes a reversible isothermal process from an initial pressure P_{1} to a final pressure P_{2}. The heat loss during the process is Q. The entropy change ΔS of the gas is

(A) mRIn | $\approx \mathrm{P}_{2}$, |
| :--- |
| |
| $\stackrel{\rightharpoonup}{\mathrm{P}} \mathrm{P}_{1}$ |

(B) $m R \ln \Delta \underset{{ }_{<}}{\approx \mathrm{P}_{1}} \mathrm{P}_{2}$,

Answer: - (B)
7. In the mechanism given below, if the angular velocity of the eccentric circular disc is $1 \mathrm{rad} / \mathrm{s}$, the angular velocity ($\mathrm{rad} / \mathrm{s}$) of the follower link for the instant shown in the figure is

(A) 0.05
(B) 0.1
(C) 5.0
(D) 10.0

Answer: - (B)
8. A circular solid disc of uniform thickness 20 mm , radius 200 mm and mass 20 kg , is used as a flywheel. If it rotates at 600rpm, the kinetic energy of the flywheel, in Joules is
(A) 395
(B) 790
(C) 1580
(D) 3160

Answer: - (B)
Exp:- K.E. of fly wheel $=\frac{1}{2}{ }^{\mathrm{I} w} 2$
$\mathrm{I}=\mathrm{mR} 2=20 \times 0.22$

$$
\overline{2}-\frac{2}{2}=0.4 \mathrm{~kg}-\mathrm{m} 2
$$

$w=\frac{2 \pi \mathrm{~N}}{60}=\frac{2 \times \pi \times 600}{60}=62.83 \mathrm{rad} / \mathrm{s}$
$K . E=21 \times 0.4 \times 62.832=790 \mathrm{~J}$
9. A cantilever beam of length L is subjected to a moment M at the free end. The moment of inertia of the beam cross section about the neutral axis is I and the Young modulus is E . The magnitude of the maximum deflection is
(A) ML^{2}
(B) ML^{2}
2EI
EI
(C) $\frac{2 \mathrm{ML}^{2}}{\mathrm{EI}}$
(D) $\frac{4 \mathrm{ML}}{2}$

Answer: - (A)
d2y
Exp:- El $d x_{2}=M$
upon intigration,
El $\frac{d y}{d x}=M x+C_{1}$
Once again integrating, weget
$E l y=M x 2$

$$
\frac{}{2}+C_{1} x+C_{2}
$$

For cantilever beam at $x=0, d y d x=0 \& x=0 y=0$
From this we get $\mathrm{C}_{1}=\mathrm{C}_{1}=0$, Hence

$$
y=\frac{M x 2}{2 E I} ; \text { maximum deflection } y \max =M L 2 \quad \overline{2 E I}
$$

10. For a long slender column of uniform cross section, the ratio of critical buckling load for the case with both ends clamped to the case with both ends hinged is
(A) 1
(B) 2
(C) 4
(D) 8

Answer: -(C)
Exp:- Critical Buckling load for column fixed at both ends $=4 \pi 2 E l$

Critical Bucking load for a column hinged at both lands m2El

Hence, $P_{c \bar{r}} 4$
11. At $x=0$, the function $f(x)=x+1$ has
(A) A maximum value
(B) A minimum value
(C) A singularity
(D) A point of inflection

Answer: - (D)
Exp: - The function $f(x)=x_{3}+1$ has a point of inflection at $x=0$, since in the graph sign of the curvature (i.e., the concavity) is changed.

12. For the spherical surface, $x{ }^{2}+y^{2}+z-1$, the unit outward normal vector at the point $\Delta \approx \frac{1}{\sqrt{2}}, 1,0$ ' \div is given by $\quad 2$ $\overline{\sqrt{2}} \frac{1}{\sqrt{2}} \diamond$
(A) $\frac{1}{\sqrt{2} i+\frac{1}{\sqrt{2}} j}$
(B) $\frac{1}{\sqrt{2} i-\frac{1}{\sqrt{2}} j}$
(C) k
(D) $13 \mathrm{i}+3 \mathrm{j}+\frac{1}{\sqrt{ }} \frac{1}{\sqrt{3}} k$
(D) $13 \mathrm{i}+3 \mathrm{j}+$

Answer: - (A)
Exp: - Given spherical surface is $x_{2}+y_{2}+z_{2}=1$ and point is $\approx \Delta 1$

$$
{ }_{«}{ }^{2}, \frac{1}{\sqrt{2}}, 0 \frac{}{\dot{\delta}}
$$

Normal vector outward to $\mathrm{x} 2+\mathrm{y} 2+\mathrm{z} 2-1=0$ at $\Delta \approx \ll 12, \frac{1,0}{\sqrt{2}} \frac{\text { is }}{\sqrt{2}}$
$\frac{12}{\sqrt{ }} i+\frac{12}{\sqrt{ }} j+0 . k=\frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} j$

13. Match the following metal forming processes with their associated stresses in the workpiece.

List I		List II	
P	Coining	1	Tensile
Q	Wire Drawing	2	Shear
R	Blanking	3	Tensile and compressive
S	Deep drawing	4	Compressive

(A) P-4, Q-1, R-2, S-3
(B) P-4, Q-1, R-3, S-2
(C) P-1, Q-2, R-4, S-3
(D) P-1, Q-3, R-2, S-4

Answer: - (A)
14. In abrasive jet machining, as the distance between the nozzle tip and the work surface increases, the material removal rate
(A) Increases continuously
(B) Decreases continuously
(C) Decreases, becomes stable and then increases
(D) Increases, becomes stable and then decreases

Answer: - (D)
15. In an interchangeable assembly, shafts of size 25.000-0.010mm mate with holes of size25.000 +0.020 mm . The maximum interference (in microns) in the assembly is
(A) 40
(B) 30
(C) 20
(D) 10

Answer: - (C)
Maximum interference = maximum size of shaft œ minimum size of hole

$$
=25.040-25.020=20 \mu \mathrm{~m}
$$

16. During normalizing process of steel, the specimen is heated
(A) Between the upper and lower critical temperature and cooled in still air
(B) Above the upper critical temperature and cooled in furnace
(C) Above the upper critical temperature and cooled in still air
(D) Between the upper and lower critical temperature and cooled in furnace

Answer: - (C)
17. Oil flows through a 200 mm diameter horizontal cast iron pipe (friction factor, $f=0.0225$) of length 500 m . The volumetric flow rate is
0.2 m
/s. The head loss (in m) due to friction is (assume $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}$
(A) 116.18
(B) 0.116
(C) 18.22
(D) 232.36

Answer: - (A)

$$
0.0225 \times 500 \times(\Pi \times \quad 0.24
$$

Exp:- $H=f 2 g D L^{2} V=$

$$
=116.18 \mathrm{~m}
$$

$$
2
$$

 related by the equation
(A) $\alpha+\rho=\tau$
(B) $\rho+\alpha+\tau=0$
(C) $\alpha+\rho=1$
(D) $\alpha+\rho=0$

Answer: - (C)
19. Steam enters an adiabatic turbine operating at steady state with an enthalpy of $3251.0 \mathrm{~kJ} / \mathrm{kg}$ and leaves as a saturated mixture at 15 kPa with quality (dryness fraction) 0.9. The enthalpies of the saturated liquid and vapour at 15 kPa are $\mathrm{h}_{\mathrm{f}}=225.94 \mathrm{~kJ} / \mathrm{kg}$ and $\mathrm{h}_{\mathrm{g}}=2598.3 \mathrm{~kJ} / \mathrm{kg}$ respectively. The mass flow rate of steam is $10 \mathrm{~kg} / \mathrm{s}$. Kinetic and potential energy changes are negligible. The power output of the turbine in MW is:
(A) 6.5
(B) 8.9
(C) 9.1
(D) 27.0

Answer: - (B)
Exp:- Power $=m_{r} \times\left(h_{1}-h_{2}\right)=10 \times(3251-(225.94+0.9 \times(2598.3-\quad 225.94)$ $=8900 \mathrm{KJ} / \mathrm{S}=8.9 \mathrm{MW}$
20. The following are the data for two crossed helical gears used for speed reduction:

Gear I: Pitch circle diameter in the plane of rotation 80 mm and helix angle 30°.
Gear II: Pitch circle diameter in the plane of rotation 120 mm and helix angle 22.5°.
If the input speed is 1440 rpm , the output speed in rpm is
(A) 1200
(B) 900
(C) 875
(D) 720

Answer: - (B)
Exp: - For helical gears

$$
\begin{aligned}
& \text { Velocity ratio }=\mathrm{d}_{2} \frac{\mathrm{~d}_{1} \cos \phi}{\cos \phi} \\
& \mathrm{~N}_{2}=1440 \times 0.625=900 \mathrm{rpm}
\end{aligned}
$$

21. A solid disc of radius r rolls without slipping on the horizontal floor with angular velocity ω and angular accelerationa. The magnitude of acceleration of the point of contact on the disc is
(A) Zero
(B) $r a$
(C) $\left.(r \sqrt{\alpha})_{2}+r \omega_{2}\right)_{2}$ (D) $r \omega_{2}$

Answer: - (A)
22. A thin walled spherical shell is subjected to an internal pressure. If the radius of the shell is increased by 1% and the thickness is reduced by 1%, with the internal pressure remaining the same, the percentage change in the circumferential (hoop) stress is
(A) 0
(B) 1
(C) 1.08
(D) 2.02

Answer: - (D)
Exp:- Hoop stress for a thin spherical shell $\left(\sigma_{h}\right)=$ Pr2t

By applying logarithm on both sides, we get, $\quad \log \left(\sigma_{h}\right)=\log (P 2)+\log (r)-\log (t)$
Differentiating the above equation, $f(t)=$ sint and it is given that $d r r=0.01$ and
$\frac{d t}{t}=-0.01$
t
Up on substituting we get, dбס $h=0.02, \therefore$ percentage increase will be 2%.
23. The area enclosed between the straight line $y=x$ and the parabola $y=x$ in the $x-y$ plane is

2
(A) $1 / 6$
(B) $1 / 4$
(C) $1 / 3$
(D) $1 / 2$

Answer: - (A)
Exp:- The given curves are $y=x$ and $y=x 2$ solving (1) and (2), we

$$
\begin{aligned}
& \text { Have } x=0, x=1
\end{aligned}
$$

$$
\begin{aligned}
& =16 \text { sq units }
\end{aligned}
$$

24. Consider the function $f(x)=\psi \mid$ in the interval $-1 \leq x \leq 1$.

At the point $\mathrm{x}=0, \mathrm{f}(\mathrm{x})$ is
(A) Continuous and differentiable
(B) Non-continuous and differentiable
(C) Continuous and non-differentiable
(D) Neither continuous nor differentiable

Answer: - (C)
Exp:- Given function is $f(x)=|x|^{`}$
$|\mathrm{x}|$ is continues at $\mathrm{x}=0$ but not differentiable
25. $\lim _{x \rightarrow 0} \frac{\approx 1-\cos x}{\langle } x^{2}$ is
(A) $1 / 4$
(B) $1 / 2$
(C) 1
(D) 2

Answer: - (B)

Q. No. 26 œ 55 Carry Two Marks Each
26. Calculate the punch size in mm , for a circular blanking operation for which details are given below:
Size of the blank
Thickness of the sheet
25 mm
Radial clearance between punch and die
2 mm
Die allowance
0.06 mm
0.05 mm
(A) 24.83
(B) 24.89
(C) 25.01
(D) 25.17

Answer: - (A)
Exp:- \quad Diameter of punch $=$ Diameter of Blank $œ 2 \mathrm{x}$ radial clearance- die allowance $=25-2 \times 0.06-0.05=24.83 \mathrm{~mm}$
27. In a single pass rolling process using 410 mm diameter steel rollers, a strip of width 140 mm and thickness 8 mm undergoes 10% reduction of thickness. The angle of bite in radians is
(A) 0.006
(B) 0.031
(C) 0.062
(D) 0.600

Answer: - (C)
Exp:- $\Delta H=D(1-\cos \alpha)$

$$
\begin{aligned}
& \cos \alpha=1-\Delta \mathrm{DH}=1-0.1410 \times 8 \\
& \alpha=3.57 \circ
\end{aligned}
$$

$\alpha=3.57 \times \frac{\pi}{180}$ radians
$\alpha=0.062$ radians
28. In a DC arc welding operation, the voltage-arc length characteristic was obtained as $V_{\text {arc }}=20+5 I$ where the arc length I was varied between 5 mm and 7 mm . Here Varc denotes the arc voltage in Volts. The arc current was varied from 400A to 500A. Assuming linear power source characteristic, the open circuit voltage and short circuit current for the welding operation are:
(A) $45 \mathrm{~V}, 450 \mathrm{~A}$
(B) $75 \mathrm{~V}, 550 \mathrm{~A}$
(C) $95 \mathrm{~V}, 950 \mathrm{~A}$
(D) $150 \mathrm{~V}, 1500 \mathrm{~A}$

Answer: - (C)
Exp:- Varc $=20+51$
$\mathrm{I}=5 \mathrm{~mm}, \mathrm{Varch}=45 \mathrm{~V}$
$\mathrm{I}=7 \mathrm{~mm}, \mathrm{Varch}=55 \mathrm{~V}$
$\mathrm{V}=\mathrm{V}_{0}-\frac{\mathrm{VIol}}{\mathrm{s}} \quad$ (where V_{0} isopencircuit voltage
and Is isshort circuit current)
$45=\mathrm{V}_{0}-\frac{\mathrm{VI} 0}{\mathrm{~s}} \times 500$
$55=V_{0}-\mathrm{VI}_{0} \times 400$

S

Upon solving (1) and (2) we get
$\mathrm{Vo}=95$ volts
$I s=950 A$
29. A large tank with a nozzle attached contains three immiscible inviscid fluids as shown. Assuming that the changes in h_{1}, h_{2} and h_{3} are negligible, the instantaneous discharge velocity is:

(A) $\sqrt{2 g h \underset{{ }_{3} \underset{\star}{\approx}}{\approx} \quad \frac{\rho_{1} h_{1}+\rho_{2} h_{2}}{\rho_{3} h_{3}} \rho \frac{h_{3}}{h_{3}} \div}$
(B) $\underset{\forall}{ }\left(h_{1}+h_{2}+h_{3}\right)$
(C) $\sqrt{2 g \Delta \frac{\rho_{1} h_{1}+\rho_{2} h_{2}+\rho_{3} h_{3}}{\rho_{1}+\rho_{2}+\rho_{3}}} \dot{\dot{\delta}}$
(D) $\sqrt{2 g \frac{\approx \rho_{1} h_{2} h_{3}+\rho_{2} h_{3} h_{1}+\rho_{3} h_{1} h_{2}}{{ }^{\alpha}} \frac{\rho_{1} h_{1}+\rho_{2} h_{2}+\rho_{3} h_{3}}{\dot{\circ}}} \div$

Answer: - (A)
Exp:- Applying Bernoulli's equation, at exit we get,
$\frac{P_{1}}{\rho_{3}}+g z_{1}+\frac{V_{2}}{2}=\rho_{3} P_{2}+g z+V_{22}$
We know that $Z_{1}=Z_{2}, V_{1}=0$ \& $P_{2}=P a t m$
Hence it reduce to
$\frac{P_{1}}{\rho_{3}}=\frac{V_{22}}{2}$
$V_{2}=\sqrt{\frac{2 P_{1}}{\rho_{3}}}$
But $P_{1}=\rho_{1}$ gh $_{1}+\rho_{2} g_{2}+\rho_{3} h_{3}$
Upon substituting we get,
$V_{2}=\sqrt{\left.g h h_{3} » \ldots 1+\frac{\rho_{1} \rho_{1} h}{23}+\begin{array}{l}\rho_{2} h \underline{2} \\ \rho_{3} h_{3} \\ y\end{array}\right)}$
30. ()
 rate of $2.09 \mathrm{~kg} / \mathrm{s}$. If the effectiveness of the heat exchanger is 0.8 , the LMTD (in ${ }^{\circ} \mathrm{C}$) is
(A) 40
(B) 20
(C) 10
(D) 5

Answer: - (C)
Exp:- $\varepsilon=C_{\text {min }}^{C_{h}} \times\left(t_{h_{1}-t_{n}}-t_{t_{0}}\right)_{1}$
$0.8=\frac{4.18 \times 0.5}{-2.09 \times 1} \times \frac{(80-\text { th })}{(80-30)}$
$\mathrm{th}_{\mathrm{n}}=40^{\circ} \mathrm{C}$
$m_{n c} C_{1}\left(t_{1}-t_{n}\right)=m_{2} C_{p}\left(t_{c_{2}}-t_{c}\right)$
$0.5 \times 4.18 \times 40=2.09 \times 1 \times\left(\right.$ to $\left._{c}-30\right)$
$\mathrm{t}_{\mathrm{c}_{2}}=70^{\circ} \mathrm{C}$
$\theta_{1}=\theta_{2}=10 \mathrm{C} .:$ LMTD $=10 \mathrm{C}$
31. A solid steel cube constrained on all six faces is heated so that the temperature rises uniformly by ΔT. If the thermal coefficient of the material is α, Young's modulus is E and the Poisson's ratio is v , the thermal stress developed in the cube due to heating is
(A) $-\alpha(\Delta T) E$
(1-2v)
(B) $-\frac{2 \alpha(\Delta T) E}{(1-2 v)}$
(C) $-\frac{3 a(\Delta T) E}{(1-2 v)}$
(D) $-\frac{a(\Delta T) E}{3(1-2 v)}$

Answer: - (A)
32. A solid circular shaft needs to be designed to transmit a torque of 50 Nm . If the allowable shear stress of the material is 140 MPa , assuming a factor of safety of 2 , the minimum allowable design diameter in mm is
(A) 8
(B) 16
(C) 24
(D) 32

Answer: - (B)
Exp:- $\quad \mathrm{T}=50 \mathrm{~N} œ \mathrm{n}$; Tallowable $=140 \mathrm{MPa}$

$$
\text { fo.S }=2 ; \quad \text { Tsafe }=\frac{\text { Tallowable }=70 \mathrm{MPa}}{\mathrm{f}_{\mathrm{O} . \mathrm{S}}}
$$

We know, $\underset{\mathrm{P}}{\mathrm{ZT}=}$ Tsafe

$$
\begin{aligned}
& Z P=\frac{\pi d_{3} \Omega}{16} d_{3}=\pi 16 \frac{\mathrm{~T}}{\mathrm{~T}} \\
& \mathrm{~d}=\sqrt{\frac{16 \times 50 \times 103}{\pi \times 70}} \\
& \mathrm{~d}=15.38 \mathrm{~mm} \approx 16 \mathrm{~mm}
\end{aligned}
$$

33. A force of 400 N is applied to the brake drum of 0.5 m diameter in a band brake system as shown in the figure, where the wrapping angle is 180°. If the coefficient of friction between the drum and the band is 0.25 , the braking torque applied, in Nm is

(A) 100.6
(B) 54.4
(C) 22.1
(D) 15.7

Answer: - (B)
Exp:- As the drum is rotating in anti clock wise direction, T 1 will be tight side \& T 2 will be clack side.
\& $\frac{T_{1}}{T_{2}}=e_{\mu \theta}=\mathrm{e} 0.25 \times \pi=2.19$
$\mathrm{T}_{2}=182.375 \mathrm{~N}$
Breaking torque $=\left(T_{1}-T_{2}\right) r$

$=54.4 \mathrm{~N}-\mathrm{m}$
34. A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after another without replacement. The probability that the selected set contains one red ball and two black balls is
(A) $\frac{1}{20}$
(B) $\frac{1}{12}$
(C) $\frac{3}{10}$
(D) $\frac{1}{2}$

Answer: - (D)
Exp:- Given, $\frac{\text { Red }}{4} \frac{\text { Black }}{6}$
The selection will be RBB or BBR of BRB

$$
\begin{aligned}
& \text { Probability of selecting RBB }=4 \overline{10} \times \frac{6}{9} \times \frac{5}{8}- \\
& \text { Probability of selecting } \mathrm{BBR}=6 \overline{10} \times \frac{5}{9}-\times \frac{4}{8}- \\
& \text { Probability of selecting } \mathrm{BRB}=6 \overline{10} \times \frac{4}{9} \times \frac{5}{8}-
\end{aligned}
$$

P(Red=1) =sum of above three probabilities= 0.5
35. Consider the differential equation $x \frac{2 y 2+2 d x d x d y-4 y}{d x}=0$ with the boundary conditions of $y(0)=0$ and $y(1)=1$. The complete solution of the differential equation is
(A) x^{2}
(B) $\sin \frac{\pi \pi x}{\stackrel{4}{4}} \frac{\square}{\bar{\delta}}$
(C) $e^{\times} \sin \frac{\pi}{4} \frac{\pi x}{2} \frac{1}{\overline{3}}$
(D) e-x $\sin \underset{{ }_{<}^{2}}{\frac{\pi \pi x}{2}}{ }^{\prime}$

Answer: - (A)
Exp:- x2 d2y2 $+x$ dy
$d x$

$$
y(0)=0
$$

$$
y(1)=1
$$

Cauchy's D.E
$y=x 2$ $d y=2 x \quad d d x 2 y 2=2$
$y=x-2 d y d x=-2 x-3 d y d x 2=+6 x-4$
$y=x-2 d y d x \neq-2 x-3 d y d x 2=+6 x-4$
x2
$\mathrm{m}_{2} \mathrm{f}=0 \mathrm{~m} 2=4$
$\left.m= \pm x_{4}\right)+\left(-2 x_{3}\right) \quad-4\left(1 x_{2}\right)=0$
\therefore The required solution is $\mathrm{C}_{1 \times 2}+\mathrm{C}_{2 \times 2}+\mathrm{C}_{2} \times 2$

Hence the answer is x.
36. The system of algebraic equations given below has
$x+2 y+z=4$
$2 x+y+2 z=5$
$x-y+z=1$
(A) A unique solution of $x=1, y=1$ and $z=1$
(B) Only the two solutions of ($\mathrm{x}=1, \mathrm{y}=1$ and $\mathrm{z}=1$) and ($\mathrm{x}=2, \mathrm{y}=1$ and $\mathrm{z}=0$)
(C) Infinite number of solutions
(D) No feasible solution

Answer: - (C)
Exp:- The given equations are

$$
\begin{equation*}
x+2 y+z=4 \tag{1}
\end{equation*}
$$

$2 x+y+2 z=5$
$x+y+z=1$
Eliminating n from (1) \& (2), we have
$y=1$
Eliminating x form (2) \& (3), we have
$y=1$
Lines (4) and (5) are coincident
Hence the given equation has infinite solutions
37. The homogeneous state of stress for a metal part undergoing plastic deformation is

»10

Where the stress component values are in MPa. Using von Mises yield criterion, the value of estimated shear yield stress, in MPa is
(A) 9.50
(B) 16.07
(C) 28.52
(D) 49.41

Answer: - (B)

We know, $\sigma_{11}=10, \sigma_{22}=20$,

$$
\begin{aligned}
& \quad \sigma_{33}=-10 ; \sigma_{12}=5 ; \sigma_{23}=\sigma_{13}=0 \\
& \therefore \sigma_{\text {eq }}=27.839 \mathrm{MPa} \\
& \text { Shear stress at yield } \mathrm{Ty}=\sigma \quad \frac{\mathrm{eg} 3}{\sqrt{ }}=16.07 \mathrm{MPa}
\end{aligned}
$$

38. Details pertaining to an orthogonal metal cutting process are given below

Chip thickness ratio
Unreformed thickness
Rake angle
Cutting speed
Mean thickness of primary shear zone
The shear strain rate in s during the process is
(A) 0.1781×10
-1
(B) 0.7754×10
0.4
0.6 mm
$+10^{\circ}$
$2.5 \mathrm{~m} / \mathrm{s}$
25 microns
\qquad
(C) 1.0104×10
(D) 4.397×10

Answer: - (C)
Exp:- $r=0.4$
$\mathrm{t} 1=0.6 \mathrm{~mm}$
a $=10$ o
$\mathrm{Vc}=2.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{tm}=25 \mu \mathrm{~m}$
$\tan \varphi=\begin{array}{r}\text { rcosa } \\ 1-r \operatorname{sina}\end{array}=0.4233 \Omega \varphi=\quad 22.9 \circ$
Shear strain rate $=\cos (\varphi-\alpha) \times \cos \alpha-\cos 12.9 \times 25 \times 10-6=\cos 10 \quad=1.0104 \times 105 \mathrm{~S}$
39. In a single pass drilling operation, a through hole of 15 mm diameter is to be drilled in a steel plate of 50 mm thickness. Drill spindle speed is 500 rpm , feed is $0.2 \mathrm{~mm} / \mathrm{rev}$ and drill point angle is 118°. Assuming 2 mm clearance at approach and exit, the total drill time in seconds is
(A) 35.1
(B) 32.4
(C) 31.2
(D) 30.1

Answer: - (A)
Exp:- $\quad \mathrm{T}=(\mathrm{Ln}+\mathrm{A}+\mathrm{O}+\mathrm{C})$

- Nf
$\mathrm{Lh}=50 \mathrm{~mm} ; \mathrm{A}=\mathrm{O}=2 \mathrm{~mm} ; \mathrm{C}=\mathrm{D} 2 \cot (2 \beta)=7.5 \times \cot (59)=4.5 \mathrm{~mm}$
$\mathrm{N}=500 \mathrm{rpm} ; \mathrm{f}=0.2 \mathrm{~mm} / \mathrm{rev}$
$\mathrm{T}_{\mathrm{c}}=0.585 \mathrm{~min}$ or35.1 Seconds

40. Consider two infinitely long thin concentric tubes of circular cross section as shown in the figure. If D_{1} and D_{2} are the diameters of the inner and outer tubes respectively, then the view factor F_{22} is given by

(A) $\begin{aligned} & \approx \mathrm{D}_{2} \\ & \stackrel{\Delta}{«} \mathrm{D}_{1} \\ & \dot{b}^{\prime}\end{aligned}$
(B) Zero
(C) $\underset{« \mathrm{D}_{2}}{\approx \mathrm{D}_{1}} \stackrel{\prime}{\dot{j}}$
(D) $1-\underset{{ }_{\text {D }}}{\approx} \underset{\mathrm{D}_{2}}{\approx \mathrm{D}_{1}} \dot{\bar{j}}$

Answer: - (D)
Exp:- $\mathrm{F}_{22}=1-\mathrm{F}_{21}=1-$

$$
A_{1}^{A_{1}^{1}}=1-D_{2}^{D}
$$

41. An incompressible fluid flows over a flat plate with zero pressure gradient. The boundary layer thickness is 1 mm at a location where the Reynolds number is 1000. If the velocity of the fluid alone is increased by a factor of 4 , then the boundary layer thickness at the same location, in mm will be
(A) 4
(B) 2
(C) 0.5
(D) 0.25

Answer: - (C)
Exp:- Boundary layer thickness (δ) a $\frac{1}{\sqrt{R_{e}}}$
Rea $V \Omega \delta \alpha \quad \frac{1}{\sqrt{V}}$
If velocity of fluid is increased by 4 times then boundary layer thickness reduces by half
42. A room contains 35 kg of dry air and 0.5 g of water vapour. The total pressure and temperature of air in the room are 100 kPa and $25^{\circ} \mathrm{C}$ respectively. Given that the saturation pressure for water at $25^{\circ} \mathrm{C}$ is 3.17 kPa , the relative humidity of the air in the room is
(A) 67%
(B) 55%
(C) 83%
(D) 71%

Answer: - (D)
43. A fillet-welded joint is subjected to transverse loading F as shown in the figure. Both legs of the fillets are of 10 mm size and the weld length is 30 mm . If the allowable shear stress of the weld is 94 MPa , considering the minimum throat area of the weld, the maximum allowable transverse load in kN is

(A) 14.44
(B) 17.92
(C) 19.93
(D) 22.16

Answer: - (C)
Exp:- $P=0.707$ sl. Tallowable
$P=0.707 \times 10 \times 30 \times 94=19937.4 \mathrm{~N}$
$\mathrm{P}=19.934 \mathrm{kM}$
44. A concentrated mass m is attached at the centre of a rod of length 2 L as shown in the figure. The rod is kept in a horizontal equilibrium position by a spring of stiffness k . For very small amplitude of vibration, neglecting the weights of the rod and spring, the undamped natural frequency of th system is:
(A) $\sqrt{\frac{k}{m}}$
(B) $\sqrt{\frac{2 \mathrm{k}}{\mathrm{m}}}$
(C) $\sqrt{\frac{k}{2 m}}$
(D) $\sqrt{\frac{4 \mathrm{k}}{\mathrm{m}}}$

Answer: - (D)
45. The state of stress at a point under plane stress condition is

$$
\sigma_{x x}=40 \mathrm{MPa} ; \sigma_{y y}=100 \mathrm{MPa} \text { and } \mathrm{T}_{\mathrm{xy}}=40 \mathrm{MPa}
$$

The radius of the Mohr's circle representing the given state of stress in MPa is
(A) 40
(B) 50
(C) 60
(D) 100

Answer: - (B)
Exp:- $\sigma_{x x}=40 \mathrm{MPa} ; \sigma_{y y}=100 \mathrm{MPa}, \mathrm{T}_{x y}=40 \mathrm{MPa}$

46. The inverse Laplace transform of the function $F(s)=$ $\stackrel{1}{s(s+1)}$ is given by
(A) $f(t)=\operatorname{sint}$
(B) $f(t)=e-t \operatorname{sint}$
(C) $f(t)=e-t$
(D) $f(t)=1-e-t$

Answer: - (D)

47. For the matrix $A=» \ldots 5$ 3 $\begin{array}{ll}1 & 3 \ddot{y}, \\ 1 & 3\end{array}$, ONE of the normalized eigen vectors is given as
≈ 1,

(A) | $\Delta_{2} \div$ |
| :--- |
| Δ |
| $\Delta \sqrt{3} \div$ |
| |
| |

(B) $\begin{aligned} & \approx 1 \\ & \Delta \\ & \Delta \\ & \Delta-1 \\ & \\ & \Delta \overline{\sqrt{2}} \dot{\bar{\delta}}\end{aligned}$

≈ 1,

Answer:- (B)
Exp:- $\left.A-\lambda|=\rho \Omega 5-\lambda| \begin{array}{r}3 \\ 1\end{array} \right\rvert\,=0 \Omega(5-\lambda)(3-\lambda)=3=0$
$\Omega \lambda_{2}-8 \lambda+15-3=0 \Omega \lambda_{2}-8 \lambda+12=0 \Omega \lambda=2, \lambda=6$
(A-21) $\times X=0$
At, $\lambda=2$
$\approx 3 \quad 3^{\prime} \approx x_{1}^{\prime} \quad \approx 0^{\prime} ; x_{1}+\quad x_{2}=0$
${ }_{<1} 10^{\circ}{ }^{\circ}{ }_{<x_{2}} \dot{\dot{\delta}}{ }_{\Delta} \div x_{1}=x_{2}$
0
" \diamond

Common Data Questions: 48 \& 49

Two steel truss members $A C$ and $B C$, each having cross sectional area of $100 \mathrm{~mm}^{2}$, are subjected to a horizontal force F as shown in the figure. All the joints are hinged.

48. The maximum force F in kN that can be applied at C such that the axial stress in any of the truss members DOES NOT exceed 100 MPa is
(A) 8.17
(B) 11.15
(C) 14.14
(D) 22.30

Answer: - (B)
Exp: - From Lame's theorem,

$$
\begin{gathered}
F=\begin{array}{c}
F_{A} \\
\operatorname{Sin} 105
\end{array}=\begin{array}{r}
F_{B} \\
\operatorname{Sin} 120 \\
\operatorname{Sin} 135
\end{array} \\
\Omega F_{A}=0.8965 F ; F_{B}=0.732 F
\end{gathered}
$$

$$
\begin{aligned}
& \therefore \text { maximum force is } F_{A} \text { and stress }=\quad \frac{F_{A}}{\text { Area }}=100 \mathrm{MPa} \\
& \frac{0.8965 \mathrm{~F}}{100}=100 \mathrm{MPa} \Omega F=11154.48 \mathrm{~N} \text { or } 11.15 \mathrm{KN}
\end{aligned}
$$

49. If $F=1 \mathrm{kN}$, the magnitude of the vertical reaction force developed at the point B in KN is
(A) 0.63
(B) 0.32
(C) 1.26
(D) 1.46

Answer: - (A)
verticalreactionatpoint B is $R_{B}=F_{B} \cos 30=0.633 F$
$F=1 \mathrm{KN}: \mathrm{R}_{B}=0.633 \mathrm{KN}$

Common Data Questions: 50 \& 51

A refrigerator operates between 120 kPa and 800 kPa in an ideal vapour compression cycle with R-134a as the refrigerant. The refrigerant enters the
compressor as saturated vapour and leaves the condenser as saturated liquid.
The mass flow rate of the refrigerant is $0.2 \mathrm{~kg} / \mathrm{s}$. Properties for R-134a are as follows:

Saturated R-134a					
$\mathrm{P}(\mathrm{kPa})$	$\mathrm{T}^{\text {o}} \mathrm{C}$	$\mathrm{hf}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}_{9}(\mathrm{~kJ} / \mathrm{kg})$	$\mathrm{s}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K})$	$\mathrm{s}_{9}(\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K})$
120	-22.32	22.5	237	0.093	0.95
800	31.31	95.5	267.3	0.354	0.918

Superheated R-134a			
$\mathrm{P}(\mathrm{kPa})$	$\mathrm{T} \circ \mathrm{C}$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K})$
800	40	276.45	0.95

50. The power required for the compressor in kW is
(A) 5.94
(B) 1.83
(C) 7.9
(D) 39.5

Answer: - (C)
Exp:-

Power required for compressor $=m_{r}\left(h_{2}-h_{1}\right)$

$$
=0.2 \times(276.45-237)=7.9 \mathrm{~kW}
$$

51. The rate at which heat is extracted in kJ / s from the refrigerated space is
(A) 28.3
(B) 42.9
(C) 34.4
(D) 14.6

Answer: - (A)
Exp:- Rate at which heat is extracted $=m_{r}\left(h_{1}-h_{4}\right)$

$$
=0.2(237-95.5)=28.3 \mathrm{~kW}
$$

Statement for Linked Answer Questions: 52 \& 53

For a particular project, eight activities are to be carried out. Their relationships with other activities and expected durations are mentioned in the table below.

Activity	Predecessors	Duration (days)
A	-	3
B	a	4
C	a	5
D	a	4
E	b	2
F	d	9
G	c.e	6
H		2

52. The critical path for the project is
(A) a-b-e-g-h
(B) a-c-g-h
(C) a-d-f-h
(D) $a-b-c-f-h$

Answer: - (C)
Exp:-

Varies path are
A BEGH-17 days
A C G H -16 days
A DFH -18 days;
ADFH is critical path
53. If the duration of activity f alone is changed from 9 to 10 days, then the
(A) Critical path remains the same and the total duration to complete the project changes to 19days
(B) Critical path and the total duration to complete the project remain the same
(C) Critical path changes but the total duration to complete the project remains the same
(D) Critical path changes and the total duration to complete the project changes to 17days
Answer: - (A)
Exp:- If duration of activity F has changed to 10 days, critical path remains the same and project duration will increase to 19 days.

Statement for Linked Answer Questions: 54 \& 55

Air enters an adiabatic nozzle at $300 \mathrm{kPa}, 500 \mathrm{~K}$ with a velocity of $10 \mathrm{~m} / \mathrm{s}$. It leaves the nozzle at 100 kPa with a velocity of $180 \mathrm{~m} / \mathrm{s}$. The inlet area is 80 cm . The specific heat of air C_{p} is $1008 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$.
54. The exit temperature of the air is
(A) 516 K
(B) 532 K
(C) 484 K
(D) 468 K

Answer: - (C)
Exp:- $\mathrm{h}_{1}+\mathrm{v}_{1} \quad / 2=\mathrm{h}_{2}+\mathrm{v}_{2} \quad{ }^{2} / 2$

$$
\begin{aligned}
& \frac{\mathrm{v}_{2}^{2}-\mathrm{V}_{1}}{2{ }^{2}}=\mathrm{h}_{1}-\mathrm{h}_{2}=\mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \\
& 180^{2}-10^{2}=1008 \times\left(500-\mathrm{T}_{2}\right) \\
& 2 \\
& \mathrm{~T}_{2}=484 \mathrm{~K}
\end{aligned}
$$

55. The exit area of the nozzle in cm is
(A) 90.1
(B) 56.3
(C) 4.4
(D) 12.9

Answer: - (D)
Exp:- From continuity equation we get,

$$
\begin{aligned}
& \rho_{1} A_{1} V_{1}=\rho_{2} A_{2} V_{2} \\
& \frac{P_{1}}{R T_{1}} \times A_{1} V_{1}=\frac{P_{2}}{R T_{2}} \times A_{2} V_{2} \Omega A_{2}=\frac{P_{1} T_{2}}{P_{2} T_{1}} \times V_{1} \\
& A_{2}=\frac{300 \times 484}{500 \times 100} \times \frac{10 \times 80}{180}=12.9 \mathrm{~cm}
\end{aligned}
$$

Q. No. 56 œ 60 Carry One Mark Each
56. The cost function for a product in a firm is given by $5 q$, where q is the amount of production. The firm can sell the product at a market price of Rs. 50 per unit. The number of units to be produced by the firm such that the profit is maximized is
(A) 5
(B) 10
(C) 15
(D) 25

Answer: (A)
Exp:- $\quad P=50 q-5 q$

$$
\begin{aligned}
& \frac{d d p q}{}=50-10 q ; \frac{d p}{d^{2}}<0 \\
& \therefore \mathrm{p} \text { is maximum at } 50-10 q=0 \text { or, } q=5 \\
& \text { Else check with options }
\end{aligned}
$$

57. Choose the most appropriate alternative from the options given below to complete the following sentence:
Suresh's dog is the one \qquad was hurt in the stampede.
(A) that
(B) which
(C) who
(D) whom

Answer: (A)
58. Choose the grammatically INCORRECT sentence:
(A) They gave us the money back less the service charges of Three Hundred rupees.
(B) This country's expenditure is not less than that of Bangladesh.
(C) The committee initially asked for a funding of Fifty Lakh rupees, but later settled for a lesser sum.
(D) This country's expenditure on educational reforms is very less

Answer: (D)
59. Which one of the following options is the closest in meaning to the word given below?
Mitigate
(A) Diminish
(B) Divulge
(C) Dedicate
(D) Denote

Answer: (A)
60. Choose the most appropriate alternative from the options given below to complete the following sentence:
Despite several \qquad the mission succeeded in its attempt to resolve the conflict.
(A) attempts
(B) setbacks
(C) meetings
(D) delegations

Answer: (B)

Q. No. 61 œ 65 Carry Two Marks Each

61. Wanted Temporary, Part-time persons for the post of Field Interviewer to conduct personal interviews to collect and collate economic data. Requirements: High School-pass, must be available for Day, Evening and Saturday work. Transportation paid, expenses reimbursed.
Which one of the following is the best inference from the above advertisement?
(A) Gender-discriminatory
(B) Xenophobic
(C) Not designed to make the post attractive
(D) Not gender-discriminatory

Answer: (C)
Exp:- Gender is not mentioned in the advertisement and (B) clearly eliminated
62. Given the sequence of terms, AD CG FK JP, the next term is
(A) OV
(B) OW
(C) PV
(D) PW

Answer: (A)
Exp:-

63. Which of the following assertions are CORRECT?

P: Adding 7 to each entry in a list adds 7 to the mean of the list
Q: Adding 7 to each entry in a list adds 7 to the standard deviation of the list
R : Doubling each entry in a list doubles the mean of the list
S : Doubling each entry in a list leaves the standard deviation of the list unchanged
(A) P, Q
(B) Q, R
(C) P, R
(D) R, S

Answer: (C)
Exp:- P and R always holds true
Else consider a sample set $\{1,2,3,4\}$ and check accordingly
64. An automobile plant contracted to buy shock absorbers from two suppliers X and Y. X supplies 60% and Y supplies 40% of the shock absorbers. All shock absorbers are subjected to a quality test. The ones that pass the quality test are considered reliable Of X's shock absorbers, 96% are reliable. Of Y's shock absorbers, 72% are reliable.
The probability that a randomly chosen shock absorber, which is found to be reliable, is made by Y is
(A) 0.288
(B) 0.334
(C) 0.667
(D) 0.720

Answer: (B)
Exp:-
Supply
Reliable
Overall

x
 60\%

96\%
0.576
y
40\%
72\%
0.288
$\therefore \mathrm{P}(\mathrm{x})=0.576+0.2888=0.334$
65. A political party orders an arch for the entrance to the ground in which the annual convention is being held. The profile of the arch follows the equation $y=2 x-0.1 x$ where y is the height of the arch in meters. The maximum possible height of the arch is
(A) 8 meters
(B) 10 meters
(C) 12 meters
(D) 14 meters

Answer: (B)
Exp:- $y=2 x-0.1 x$

$$
\begin{aligned}
& \frac{d y}{d x}=2-0.2 x \\
& \frac{d^{2} y}{d x^{2}}<0 \therefore y \text { maximises at } 2-0.2 x=0 \\
& \Omega x=10 \\
& \therefore y=20-10=10 \mathrm{~m}
\end{aligned}
$$

