Q. No. 1 to 25 Carry One Mark Each

- 1. Which one of the following is NOT a decision taken during the aggregate production planning stage?
 - (A) Scheduling of machines
 - (B) Amount of labour to be committed
 - (C) Rate at which production should happen
 - (D) Inventory to be carried forward

Answer: - (B)

- 2. A CNC vertical milling machine has to cut a straight slot of 10mm width and 2mm depth by a cutter of 10mm diameter between points (0,0) and (100,100) on the XY plane (dimensions in mm). The feed rate used for milling is 50mm/min. milling time for the slot (in seconds) is
 - (A) 120
- (B) 170
- (C) 180
- (D) 240

Answer: - (A)

- 3. A solid cylinder of diameter 100mm and height 50mm is forged between two frictionless flat dies to a height of 25mm. The percentage change in diameter is
 - (A) 0

- (B) 2.07
- (C) 20.7
- (D) 41.4

Answer: - (D)

Exp:- From incompressibility we get

$$\pi d_1^2 h_1 = \pi d_1 g_{12}$$

$$d_2 = d_1 \times \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

$$d_2 = 100 \times 5025 = 141.42$$

Percentage change in diameter = $d_2 - d_1 \times 100 = 41.42\%$

d1

4. The velocity triangles at the inlet and exit of the rotor of a turbo machine are shown. V denotes the absolute velocity of the fluid, W denotes the relative velocity of the fluid, and U denotes the blade velocity. Subscripts 1 and 2 refer to inlet and outlet respectively. If V $_2$ = W $_1$ and V $_1$ = W $_2$, then the degree of reaction is

(A) 0

(B) 1

- (C) 0.5
- (D) 0.25

Answer: - (C)

- 5. Which one of the following configurations has the highest fin effectiveness?
 - (A) Thin, closely spaced fins

(B) Thin, widely spaced fins

(C) Thick widely spaced fins

(D) Thick, closely spaced fins

Answer: - (A)

- 6. An ideal gas of mass m and temperature T₁ undergoes a reversible isothermal process from an initial pressure P₁ to a final pressure P₂. The heat loss during the process is Q. The entropy change ΔS of the gas is
- (A) $mRIn \xrightarrow{\approx P_2}$ (B) $mRIn\Delta \xrightarrow{\approx P_1}$ (C) $mRIn\Delta \xrightarrow{\approx F_2}$ (D) Zero

Answer: - (B)

7. In the mechanism given below, if the angular velocity of the eccentric circular disc is 1rad/s, the angular velocity (rad/s) of the follower link for the instant shown in the figure is

- (A) 0.05
- (B) 0.1
- (C) 5.0
- (D) 10.0

Answer: - (B)

- A circular solid disc of uniform thickness 20mm, radius 200mm and mass 20kg, is 8. used as a flywheel. If it rotates at 600rpm, the kinetic energy of the flywheel, in Joules is
 - (A) 395
- (B) 790
- (C) 1580
- (D) 3160

Answer: - (B)

Exp:- K.E. of fly wheel =
$$\frac{1}{2}$$
 Iw₂
I= mR₂= 20×0.2₂ = 0.4 kg-

$$w = \frac{2\pi N}{60} = \frac{2 \times \pi \times 600}{60} = 62.83 \text{ rad/s}$$

K.E=
$$21 \times 0.4 \times 62.832 = 790J$$

- 9. A cantilever beam of length L is subjected to a moment M at the free end. The moment of inertia of the beam cross section about the neutral axis is I and the Young modulus is E. The magnitude of the maximum deflection is
 - (A) ML² 2EI
- (B) ML²

Exp:- Ei $dx_2 = M$

upon intigration,

$$EI \frac{dy}{dx} = Mx + C_1$$

Once again integrating, weget

$$EI y = Mx_2$$

$$\frac{}{2}$$
 + C₁x+ C₂

For cantilever beam at x = 0, dydx = 0 & x = 0 y = 0

From this we get $C_1 = C_1 = 0$, Hence

$$y = \frac{Mx_2}{2EI}$$
; maximum deflection $y_{max} = ML_2$ $2EI$

- 10. For a long slender column of uniform cross section, the ratio of critical buckling load for the case with both ends clamped to the case with both ends hinged is
 - (A) 1

(B) 2

- (C) 4
- (D) 8

Answer: -(C)

Exp:- Critical Buckling load for column fixed at both ends = $4\pi^2EI$

L₂

Critical Bucking load for a column hinged at both lands π_2EI

 L_2

- 11. At x=0, the function f(x)=x+1 has
 - (A) A maximum value
- 3
- (B) A minimum value

(C) A singularity

(D) A point of inflection

Answer: - (D)

Exp: - The function $f(x) = x_3 + 1$ has a point of inflection at x = 0, since in the graph sign of the curvature (i.e., the concavity) is changed.

- 12. For the spherical surface, x 2 + y^{2} + z -1, the unit outward normal vector at the point $\Delta \approx$ 1 , 1 ,0 '÷ is given by
 - (A) $\frac{1}{\sqrt{2}}i + \frac{1}{\sqrt{2}}j$ (B) $\frac{1}{\sqrt{2}}i \frac{1}{\sqrt{2}}j$
- (C) k

Exp: - Given spherical surface is $x_2 + y_2 + z_2 = 1$ and point is $\approx \Delta$ 1

$$\sqrt[8]{\sqrt{2}}$$
, $\frac{1}{\sqrt{2}}$, 0

Normal vector outward to $x_2 + y_2 + z_2 - 1 = 0$ at $\Delta \approx < 12$, 1,0 is

$$\frac{12}{\sqrt{}}$$
 i+ $\frac{12}{\sqrt{}}$ j+ 0.k = $\frac{1}{\sqrt{2}}$ j+ $\frac{1}{\sqrt{2}}$ j

Hence the outward unit normal vector =

$$\frac{\frac{1}{\sqrt{2}}i + \frac{1}{\sqrt{2}}i}{\underset{\sim}{\approx} \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}} + \underset{\sim}{\approx} \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}i + \frac{1}{\sqrt{2}}i$$

13. Match the following metal forming processes with their associated stresses in the workpiece.

List I		List II	
Р	Coining	1	Tensile
Q	Wire Drawing	2	Shear
R	Blanking	3	Tensile and compressive
S	Deep drawing	4	Compressive

(A) P-4, Q-1, R-2, S-3

(B) P-4, Q-1, R-3, S-2

(C) P-1, Q-2, R-4, S-3

(D) P-1, Q-3, R-2, S-4

Answer: - (A)

- In abrasive jet machining, as the distance between the nozzle tip and the work surface increases, the material removal rate
 - (A) Increases continuously
 - (B) Decreases continuously
 - (C) Decreases, becomes stable and then increases
 - (D) Increases, becomes stable and then decreases

Answer: - (D)

+0.040

- 15. In an interchangeable assembly, shafts of size 25.000-0.010mm mate with holes of size25.000+0.020mm. The maximum interference (in microns) in the assembly is
 - (A) 40
- (B) 30
- (C) 20
- (D) 10

Answe	er: - (C)			
	Maximum interference = 25.040-25.020 = 2	ce = maximum size of sha 0µm	ift œ minimum size of	hole
16.	During normalizing process of steel, the specimen is heated (A) Between the upper and lower critical temperature and cooled in still air (B) Above the upper critical temperature and cooled in furnace (C) Above the upper critical temperature and cooled in still air (D) Between the upper and lower critical temperature and cooled in furnace			
Answe	er: - (C)			
17.	f=0.0225) of length	a 200mm diameter hor 500m. The volumetric flo n is (assume g=9.81m/s (B) 0.116		e (friction factor, /s. The head loss ³ (D) 232.36
Answe	er: - (A)	(b) 0.110	(6) 18.22	(D) 232.30
		0.2 25×500×(Π× 0.2 4 ₂		
Ехр:-	$H = f2gDL^{3}V =$)	= 116.18m	
18.	For an opaque sur related by the equa	fac <mark>e, the l</mark> ábs orptivity(α) ation	, transitivity (τ) and re	eflectivity(ρ) are
	(Α) α+ρ= τ	(B) $\rho + \alpha + \tau = 0$	(C) α+ρ= 1	(D) $\alpha+\rho=0$
Answe	er: - (C)			
19.	3251.0kJ/kg and le fraction) 0.9. The h=225.94kJ/kg and	diabatic turbine operating eaves as a saturated mixtuenthalpies of the saturated hg=2598.3kJ/kg respector potential energy change is:	ure at 15kPa with qua ated liquid and vapo ively. The mass flow r	lity (dryness our at 15kPa are ate of steam is
	(A) 6.5	(B) 8.9	(C) 9.1	(D) 27.0
Answe	er: - (B)			
Exp:-	Power = $m_r \times (h_1 - h_2)$ = 8900KJ / S= 8.9	e)= 10×(3251- (225.94+ (9MW).9×(2598.3− 225.94	4)
20.	Gear I: Pitch circle Gear II: Pitch circ 22.5°.	he data for two crossed he diameter in the plane of relationship in the plane of the diameter in the plane of the state of the diameter in the output specific in the diameter in the output specific in the diameter in the d	otation 80mm and he	lix angle 30°.

(A) 1200

(B) 900

(C) 875

(D) 720

Exp: - For helical gears

Velocity ratio =
$$d_2 \frac{d_1 \cos \varphi}{\cos \varphi}$$
 = $\frac{80\cos 30_{\circ}}{120\cos 22.5}$ = $\frac{N_2}{N_2}$

$$N_2 = 1440 \times 0.625 = 900 \text{ rpm}$$

- 21. A solid disc of radius r rolls without slipping on the horizontal floor with angular velocity ω and angular acceleration α . The magnitude of acceleration of the point of contact on the disc is
 - (A) Zero
- (B) ra
- (C) $(\sqrt{\alpha})_2 + r\omega_2$ (D) $r\omega_2$

Answer: - (A)

- 22. A thin walled spherical shell is subjected to an internal pressure. If the radius of the shell is increased by 1% and the thickness is reduced by 1%, with the internal pressure remaining the same, the percentage change in the circumferential (hoop) stress is
 - (A) 0

(B) 1

- (C) 1.08
- (D) 2.02

Answer: - (D)

Exp:- Hoop stress for a thin spherical shell (σ_h) = Pr2t

By applying logarithm on both sides, we get, $\log(\sigma_h) = \log(P2) + \log(r) - \log(t)$

Differentiating the above equation, f(t)= sint and it is given that drr = 0.01 and

$$\frac{dt}{t} = -0.01$$

Up on substituting we get, $d\sigma\sigma_{\frac{h}{h}} = 0.02$, \therefore percentage increase will be 2%.

- The area enclosed between the straight line y=x and the parabola y=x in the x-y plane is
 - (A) 1/6
- (B) 1/4
- (C) 1/3
- (D) 1/2

Answer: - (A)

Exp:- The given curves are y = x and y = x2 solving (1) and (2), we

Have
$$x = 0$$
, $x = 1$

Area =
$$\frac{1}{0}$$
 X $\begin{pmatrix} x_2 & dx \\ \end{pmatrix}$
= $\frac{\approx x_2}{4} - \frac{x_3}{2} \div \frac{1}{2} - \frac{1}{3}$
= $\frac{16}{0}$ sq units

24. Consider the

function

 $f(x) = x | \text{in the interval -1} \le x \le 1.$

At the point x=0, f(x) is

- (A) Continuous and differentiable
- (C) Continuous and non-differentiable
- (B) Non-continuous and differentiable

(D) Neither continuous nor differentiable

Answer: - (C)

Exp:- Given function is f(x) = |x|

|x| is continues at x = 0 but not differentiable

25.
$$\lim_{x \to 0} \frac{\approx 1 - \cos x}{\sqrt[4]{x^2}}, \text{ is}$$
(A) 1/4

- (B) 1/2
- (C) 1
- (D) 2

Answer: - (B)

Exp:- It
$$\frac{1-\cos x}{x \to 0} = \frac{1+\cos x}{x^2} = \frac{1+\cos x}{x^2} = \frac{2\sin 2\frac{x}{\sqrt[4]{2}}}{x^2} = 2 = \frac{1+\cos x}{x^2} = \frac{\sin 2\frac{x}{\sqrt[4]{2}}}{\frac{x^2}{\sqrt{2}}} = 2 \times \frac{1}{\sqrt{4}} = \frac{1}{2}$$

Q. No. 26 œ 55 Carry Two Marks Each

26. Calculate the punch size in mm, for a circular blanking operation for which details are given below:

Size of the blank

25mm

Thickness of the sheet

2mm

Radial clearance between punch and die

0.06mm

Die allowance

0.05mm (C) 25.01

(D) 25.17

(A) 24.83

(B) 24.89 Answer: - (A)

Diameter of punch = Diameter of Blank œ 2 x radial clearance- die allowance Exp:-= 25-2×0.06- 0.05= 24.83 mm

- 27. In a single pass rolling process using 410mm diameter steel rollers, a strip of width 140mm and thickness 8mm undergoes 10% reduction of thickness. The angle of bite in radians is
 - (A) 0.006
- (B) 0.031
- (C) 0.062
- (D) 0.600

Answer: - (C)

Exp:- $\Delta H = D(1 - \cos \alpha)$

 $\cos \alpha = 1 - \Delta DH = 1 - 0.1410 \times 8$

 $\alpha = 3.570$

 $\alpha = 3.57 \times \frac{\pi}{180}$ radians

 α = 0.062 radians

- 28. In a DC arc welding operation, the voltage-arc length characteristic was obtained as V_{arc} = 20+ 5I where the arc length I was varied between 5mm and 7mm. Here V_{arc} denotes the arc voltage in Volts. The arc current was varied from 400A to 500A. Assuming linear power source characteristic, the open circuit voltage and short circuit current for the welding operation are:
 - (A) 45V, 450A
- (B) 75V, 550A
- (C) 95V, 950A
- (D) 150V, 1500A

Exp:-
$$V_{arc} = 20 + 51$$

$$V = V_0 - V_{10}I$$

(where V_0 isopencircuit voltage

and Is isshort circuit current)

s

$$55 = V_0 - VI_0 \times 400$$

S

Upon solving (1) and (2) we get

Vo = 95 volts

Is = 950A

29. A large tank with a nozzle attached contains three immiscible inviscid fluids as shown. Assuming that the changes in h₁, h₂ and h₃ are negligible, the instantaneous discharge velocity is:

(A)
$$\sqrt[2]{gh}_{3} \frac{\approx}{1 \frac{\pi}{M}} \frac{\rho_{1}h_{1} + \rho_{2}h_{2}}{\rho_{3}h_{3}} \frac{1}{\rho} \frac{1}{h_{3}} \frac{1}{3} \frac{1}{6}$$

(B)
$$\sqrt{g(h_1 + h_2 + h_3)}$$

(C)
$$2g\Delta \approx \rho_1h_1 + \rho_2h_2 + \rho_3h_3$$
; $\frac{1}{2}$

(D)
$$\sqrt{2g \frac{\approx \rho_1 h_2 h_3 + \rho_2 h_3 h_1 + \rho_3 h_1 h_2}{\stackrel{?}{\wedge}} \frac{?}{\hat{\wedge}}} \frac{\div}{\hat{\wedge}}$$

Exp:- Applying Bernoulli's equation, at exit we get,

$$\frac{P_1 + gz + V_2}{\rho_3} + \frac{P_2 + gz + V_{22}}{1 + \frac{1}{2}} = \rho_3 + \frac{P_2 + gz + V_{22}}{2}$$

We know that $Z_1 = Z_2$, $V_1 = 0 \& P_2 = P_{atm}$

Hence it reduce to

$$\frac{P_1 = V_{22}}{\rho}$$

$$V_2 = \sqrt{\frac{2P_1}{\rho_3}}$$

But $P_1 = \rho_1 gh_1 + \rho_2 gh_2 + \rho_3 gh_3$

Upon substituting we get,

$$V_2 = 2gh_3 \times ... 1 + \underbrace{\rho \rho h h}_{2 \text{ } 1 \text{ } 1} + \underbrace{\rho 2 h_2 \text{ } j}_{\rho_3 \text{ } h_3 \text{ } /}$$

30.

rate of 2.09kg/s. If the effectiveness of the heat exchanger is 0.8, the LMTD (in °C) is

- (A) 40
- (B) 20

- (C) 10
- (D) 5

Answer: - (C)

Exp:-
$$\epsilon = C \frac{C_h}{min} \times \frac{(t_{h_1} - t_h)}{(t_{h_1} - t_c)}$$

 $0.8 = \frac{4.18 \times 0.5}{2.09 \times 1} \times \frac{(80 - t_h)}{(80 - 30)}$
 $t_h = 40 \, ^{\circ}C$
 $m_h c_p (t_{h_1} - t_h) = m_c c_p (t_{c_2} - t_c)$
 $0.5 \times 4.18 \times 40 = 2.09 \times 1 \times (t_c - 30)$
 $t_c = 70 \, ^{\circ}C$
 $\theta_1 = \theta_2 = 10 \, C : LMTD = 10 \, C$

31. A solid steel cube constrained on all six faces is heated so that the temperature rises uniformly by ΔT . If the thermal coefficient of the material is α , Young's modulus is E and the Poisson's ratio is v, the thermal stress developed in the cube due to heating is

(A)
$$-\alpha(\Delta T)E$$

$$(1-2v)$$

(B)
$$-2\alpha(\Delta T)E$$

$$(1-2y)$$

(C)
$$-3\alpha(\Delta T)E$$

(A)
$$-\alpha(\Delta T)E$$
 (B) $-2\alpha(\Delta T)E$ (C) $-3\alpha(\Delta T)E$ (D) $-\alpha(\Delta T)E$ $3(1-2v)$

- 32. A solid circular shaft needs to be designed to transmit a torque of 50Nm. If the allowable shear stress of the material is 140MPa, assuming a factor of safety of 2, the minimum allowable design diameter in mm is
 - (A) 8

- (B) 16
- (C) 24
- (D) 32

Answer: - (B)

Exp:- T = 50N œ n; Tallowable = 140MPa

Tsafe = Tallowable =
$$70MPa$$

$$f_{O.S}$$

We know,
$$ZT = T_{safe}$$

$$Z_P = \frac{\pi d_3 \Omega}{16} d_3 = \pi 16 \underline{T} \underline{T}$$

$$d = \sqrt{\frac{16 \times 50 \times 103}{\pi \times 70}}$$

33. A force of 400N is applied to the brake drum of 0.5m diameter in a band brake system as shown in the figure, where the wrapping angle is 180°. If the coefficient of friction between the drum and the band is 0.25, the braking torque applied, in Nm is

- (A) 100.6
- (B) 54.4
- (C) 22.1
- (D) 15.7

Answer: - (B)

Exp:- As the drum is rotating in anti clock wise direction, T1 will be tight side & T2 will be clack side.

&
$$\frac{T}{T_2} = e_{\mu\theta} = e_{0.25 \times \pi} = 2.19$$

$$T_2 = 182.375 N$$

Breaking torque =
$$(T_1 - T_2)$$
 r

- T₁= 400N
- 34. A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after another without replacement. The probability that the selected set contains one red ball and two black balls is
 - (A) $\frac{1}{20}$
- (B) $\frac{1}{12}$
- (C) $\frac{3}{10}$
- (D) $\frac{1}{2}$

Exp:- Given,
$$\frac{\text{Red}}{4}$$
 $\frac{\text{Black}}{6}$

The selection will be RBB or BBR of BRB

Probability of selecting RBB =
$$4 \frac{6.5}{10.9} \times \frac{6.5}{8}$$

Probability of selecting BBR =
$$6 \frac{5}{10} \times \frac{4}{9} \times \frac{5}{8} \times \frac{4}{8}$$

Probability of selecting BRB =
$$6 \frac{45}{10} \times \frac{45}{9} \times \frac{5}{8}$$

P (Red=1) =sum of above three probabilities= 0.5

Consider the differential equation
$$x = 2yz + dx dxdy - 4y = 0$$
 with the boundary

conditions of y(0)=0 and y(1)=1. The complete solution of the differential equation is

(B)
$$\sin \frac{\approx \pi x}{\sqrt[4]{2}}$$

(C)
$$e^{\times} \sin \frac{\approx \pi x}{\sqrt[4]{2}}$$

(D)
$$e^{-x} \sin \frac{\approx \pi x}{2}$$

Answer: - (A)

Exp:-
$$x_2 d_2y_2 + x dy dx - 4y = 0$$
 $y(0) = 0$

Cauchy's D.E

$$y = x_2 \qquad \frac{dy}{dx} = 2x \quad ddx_2y_2 = 2$$

$$y = x_{-2} dydx = -2x_{-3} dydx_2 = +6x_{-4}$$

$$y = x-2 \, dydx \neq -2x-3 \, dydx_2 = +6x-4$$

$$m = \pm 2$$

 x_4 + $(-2x_3)$ - 4 $(1x_2)$ = 0
 \therefore The required solution is $C_1x_2 + C_2x_2 + C_2x_3$

2

Hence the answer is x.

36. The system of algebraic equations given below has

$$x+ 2y+ z= 4$$

 $2x+ y+ 2z= 3$
 $x- y+ z= 1$

- (A) A unique solution of x=1, y=1 and z=1
- (B) Only the two solutions of (x=1, y=1 and z=1) and (x=2, y=1 and z=0)
- (C) Infinite number of solutions

(D) No feasible solution

Answer: - (C)

Exp:- The given equations are

$$x + 2y + z = 4$$
 -(1)

$$2x + y + 2z = 5$$
 -(2)

$$x + y + z = 1$$
 -(3)

Eliminating n from (1) & (2), we have

$$y = 1$$
 -(4)

$$y = 1$$
 -(5)

Hence the given equation has infinite solutions

37. The homogeneous state of stress for a metal part undergoing plastic deformation

Where the stress component values are in MPa. Using von Mises yield criterion, the value of estimated shear yield stress, in MPa is

Answer: - (B)

Exp:-
$$\sigma = \frac{1}{2} \{ (\sigma_{11} - \sigma_{22}) + \sigma_{11} - \sigma^{22} \}^2 + 6 (\sigma_{12} + \sigma_{23})^2 + \sigma_{13} \}^2$$

We know,
$$\sigma_{11} = 10$$
, $\sigma_{22} = 20$,

$$\sigma_{33} = -10; \sigma_{12} = 5; \sigma_{23} = \sigma_{13} = 0$$

$$\sigma_{eq} = 27.839MPa$$

Shear stress at yield
$$\tau_y = \sigma$$
 $\frac{\text{eq}}{\sqrt{}} 3 = 16.07 \text{MPa}$

38. Details pertaining to an orthogonal metal cutting process are given below

Chip thickness ratio

0.4

Unreformed thickness

0.6mm

Rake angle Cutting speed

+10° 2.5m/s

Mean thickness of primary shear zone

The shear strain rate in s during the process is

25 microns

(D) 4.397×10

Answer: - (C)

Exp:- r = 0.4

 $t_1 = 0.6$ mm

 $\alpha = 100$

Vc = 2.5 m/s

 $t_m = 25 \mu m$

tanφ=
$$1 \frac{\text{rcos}\alpha}{-\text{r sin}\alpha} = 0.4233 \ \Omega \phi = 22.90$$

Shear strain rate =
$$\cos(\varphi - \alpha) \times \tan = \cos 12.9 \times 25 \times 10^{-6}$$
 = 1.0104×105 / S

- 39. In a single pass drilling operation, a through hole of 15mm diameter is to be drilled in a steel plate of 50mm thickness. Drill spindle speed is 500rpm, feed is 0.2mm/rev and drill point angle is 118°. Assuming 2mm clearance at approach and exit, the total drill time in seconds is
 - (A) 35.1
- (B) 32.4
- (C) 31.2
- (D) 30.1

Answer: - (A)

Exp:-
$$T = (L_h + A + O + C)$$

$$L_h = 50 \text{mm}; A = O = 2 \text{mm}; C = D2 \cot(2\beta) = 7.5 \times \cot(59) = 4.5 \text{mm}$$

$$N = 500$$
rpm; $f = 0.2$ mm /rev

$$T_c = 0.585$$
min or 35.1 Seconds

40. Consider two infinitely long thin concentric tubes of circular cross section as shown in the figure. If D 1 and D 2 are the diameters of the inner and outer tubes respectively, then the view factor F22 is given by

- (A) $\stackrel{\approx}{\Delta} \frac{D_2}{\stackrel{\cdot}{\Delta}} \stackrel{\cdot}{\rightarrow} -1$
- (B) Zero
- (C) $\Delta \frac{=D_1}{\Delta D_2}$
- $(D)1-\Delta \frac{\sim D_1}{\Delta D_2}$

Answer: - (D)

Exp:-
$$F_{22} = 1 - F_{21} = 1 - A_1 = 1 - D_2$$

41. An incompressible fluid flows over a flat plate with zero pressure gradient. The boundary layer thickness is 1mm at a location where the Reynolds number is 1000. If the velocity of the fluid alone is increased by a factor of 4, then the boundary layer thickness at the same location, in mm will be

(A) 4

(B) 2

(C) 0.5

(D) 0.25

Answer: - (C)

Exp:- Boundary layer thickness (δ) α

 $R_{e}\,\alpha \quad V\,\,\Omega\delta\,\alpha$

If velocity of fluid is increased by 4 times then boundary layer thickness reduces by half

42. A room contains 35kg of dry air and 0.5g of water vapour. The total pressure and temperature of air in the room are 100kPa and 25°C respectively. Given that the saturation pressure for water at 25°C is 3.17kPa, the relative humidity of the air in the room is

(A) 67%

(B) 55%

(C) 83%

(D) 71%

Answer: - (D)

43. A fillet-welded joint is subjected to transverse loading F as shown in the figure. Both legs of the fillets are of 10mm size and the weld length is 30mm. If the allowable shear stress of the weld is 94MPa, considering the minimum throat area of the weld, the maximum allowable transverse load in kN is

(A) 14.44

(B) 17.92

(C) 19.93

(D) 22.16

Answer: - (C)

Exp:- P = 0.707sl. Tallowable

 $P = 0.707 \times 10 \times 30 \times 94 = 19937.4N$

P = 19.934kM

44. A concentrated mass m is attached at the centre of a rod of length 2L as shown in the figure. The rod is kept in a horizontal equilibrium position by a spring of stiffness k. For very small amplitude of vibration, neglecting the weights of the rod and spring, the undamped natural frequency of th system is:

(A) $\sqrt{\frac{k}{m}}$

(D) $\sqrt{\frac{4k}{m}}$

45. The state of stress at a point under plane stress condition is $\sigma_{xx} = 40 \text{MPa}$; $\sigma_{yy} = 100 \text{MPa}$ and $\tau_{xy} = 40 \text{MPa}$

The radius of the Mohr's circle representing the given state of stress in MPa is

- (A) 40
- (B) 50
- (C) 60
- (D) 100

Answer: - (B)

Exp:- $\sigma_{xx} = 40MPa$; $\sigma_{yy} = 100MPa$, $\tau_{xy} = 40MPa$

Radius of Mohr's circle =
$$\dots \sqrt[8]{\sigma_{xx} - \sigma_{yy} \ddot{Y} + \frac{\dot{y}^2}{\dot{Y}^2}} = {}_{2}302 + \sqrt{402 = 50 \text{ M}} \text{Pa}$$

- 46. The inverse Laplace transform of the function $F(s) = \frac{1}{s(s+1)}$ is given by
 - (A) f(t) = sint
- (B) $f(t) = e^{-t} sint$
- (C) $f(t) = e_{-t}$
- (D) $f(t) = 1 e_{-t}$

Answer: - (D)

Exp:- L-1
$$\overset{\approx}{\overset{\sim}{\triangle}}_{\tilde{S}} (\overset{1}{S+1}) \overset{?}{\overset{\rightarrow}{\div}} \overset{=}{\tilde{S}} \overset{1}{\overset{\sim}{S-1}} \overset{1}{\overset{\sim}{S+1}}$$

$$L-1 \overset{\approx}{\overset{\sim}{\Delta}} \overset{1}{\overset{\sim}{S-1}} \overset{?}{\overset{\leftarrow}{\hookrightarrow}} \overset{=}{\overset{\sim}{S-1}} \overset{1}{\overset{\sim}{\hookrightarrow}} \overset{=}{\overset{\sim}{S-1}} \overset{1}{\overset{\sim}{\hookrightarrow}} \overset{=}{\overset{\sim}{S-1}} \overset{1}{\overset{\sim}{\hookrightarrow}} \overset{=}{\overset{\sim}{S-1}} \overset{1}{\overset{\sim}{\hookrightarrow}} \overset{=}{\overset{\sim}{S-1}} \overset{=}{\overset{\sim$$

For the matrix A = $3\ddot{y}$, ONE of the normalized eigen vectors is given as $3\ddot{y}$

(A)
$$\begin{array}{c} \approx 1 \\ \Delta_2 \\ \Delta \\ \stackrel{\cdot}{\rightarrow} \\ \Delta \\ \stackrel{\cdot}{\sqrt{3}} \\ \stackrel{\div}{\leftrightarrow} \\ \stackrel{\cdot}{\sqrt{2}} \\ \stackrel{\circ}{\Diamond} \end{array}$$

(B)
$$\begin{array}{ccc} \widetilde{\Delta} & 2 \div \\ \Delta & 2 \div \\ \Delta - 1 & \div \\ \widetilde{\Delta} & \overline{\sqrt{2}} & \overleftarrow{\Diamond} \end{array}$$

(C)
$$\begin{array}{c} \approx 3 \\ \stackrel{\wedge}{\Delta} \quad 10 \\ \stackrel{\div}{\div} \\ \stackrel{\wedge}{\Delta} \quad -1 \\ \stackrel{\div}{\div} \\ \stackrel{\wedge}{\alpha} \sim 10 \\ \stackrel{\wedge}{\overleftarrow{\Delta}} \end{array}$$

$$(D) \begin{array}{c} \stackrel{\approx}{\Delta} 1 \\ \stackrel{\Delta}{5} \div \\ \stackrel{\Delta}{\cancel{\Delta}} 2 \div \\ \stackrel{\swarrow}{\cancel{\sqrt{5}}} \stackrel{\div}{\diamondsuit} \end{array}$$

Answer: - (B)

Exp:-
$$A - \lambda I = 0$$
 $\Omega 5 - \lambda$ $\begin{vmatrix} 3 \\ 1 & 3 - \lambda \end{vmatrix} = 0$ $\Omega(5 - \lambda)(3 - \lambda) = 0$

$$\Omega \lambda_2 - 8\lambda + 15 - 3 = 0 \Omega \lambda_2 - 8\lambda + 12 = 0 \Omega \lambda = 2, \lambda = 6$$

$$(A-2I)\times X=0$$

At,
$$\lambda = 2$$

Hence the required vector is
$$\frac{\frac{3}{2}}{\frac{\sqrt{2}}{\sqrt{2}}}$$
 ... $\frac{\frac{1}{2}}{\frac{\sqrt{2}}{\sqrt{2}}}$

Common Data Questions: 48 & 49

Two steel truss members AC and BC, each having cross sectional area of 100mm ², are subjected to a horizontal force F as shown in the figure. All the joints are hinged.

48. The maximum force F in kN that can be applied at C such that the axial stress in any of the truss members DOES NOT exceed 100MPa is

Answer: - (B)

Exp: - From Lame's theorem,

$$F = F_A = F_B$$

Sin105 = Sin120 = Sin135
 $\Omega F_A = 0.8965F$; $F_B = 0.732F$

$$\frac{0.8965F}{100}$$
 = 100MPa Ω F = 11154.48N or 11.15KN

49. If F = 1kN, the magnitude of the vertical reaction force developed at the point B in KN is

Answer: - (A)

Common Data Questions: 50 & 51

A refrigerator operates between 120kPa and 800kPa in an ideal vapour compression cycle with R-134a as the refrigerant. The refrigerant enters the

compressor as saturated vapour and leaves the condenser as saturated liquid.

The mass flow rate of the refrigerant is 0.2kg/s. Properties for R-134a are as follows:

Saturated R	-134a				
P(kPa)	TºC	h _f (kJ/kg)	h _g (kJ/kg)	s _f (kJ/kg·K)	s ₉ (kJ/kg·K)
120	-22.32	22.5	237	0.093	0.95
800	31.31	95.5	267.3	0.354	0.918

Superheated R-134a			
'			
P(kPa)	T°C	b(k l/ka)	o(k l/kg K)
P(KPa)	' '	h(kJ/kg)	s(kJ/kg⋅K)
800	40	276.45	0.95
		270.10	0.00

- 50. The power required for the compressor in kW is
 - (A) 5.94
- (B) 1.83
- (C) 7.9
- (D) 39.5

Answer: - (C) Exp:-

Power required for compressor = $m_r (h_2 - h_1)$

$$= 0.2 \times (276.45 - 237) = 7.9 \text{kW}$$

- 51. The rate at which heat is extracted in kJ/s from the refrigerated space is
 - (A) 28.3
- (B) 42.9
- (C) 34.4
- (D) 14.6

Exp:- Rate at which heat is extracted= $m_r(h_1 - h_4)$

$$= 0.2(237 - 95.5) = 28.3 \text{ kW}$$

Statement for Linked Answer Questions: 52 & 53

For a particular project, eight activities are to be carried out. Their relationships with other activities and expected durations are mentioned in the table below.

Activity	Predecessors	Duration (days)	
А	-	3	
В	а	4	
С	а	5	
D	а	4	
E	b	2	
F	d	9	
G	c.e	6	
Н	f,g	2	

- 52. The critical path for the project is
 - (A) a-b-e-g-h
- (B) a-c-g-h
- (C) a-d-f-h
- (D) a-b-c-f-h

Answer: - (C)

Exp:-

A DFH -18 days;

- : ADFH is critical path
- 53. If the duration of activity f alone is changed from 9 to 10 days, then the
 - (A) Critical path remains the same and the total duration to complete the project changes to 19days
 - (B) Critical path and the total duration to complete the project remain the same
 - (C) Critical path changes but the total duration to complete the project remains the same

(D) Critical path changes and the total duration to complete the project changes to 17days

Answer: - (A)

Exp:- If duration of activity F has changed to 10 days, critical path remains the same and project duration will increase to 19 days.

Statement for Linked Answer Questions: 54 & 55

Air enters an adiabatic nozzle at 300kPa, 500K with a velocity of 10m/s. It leaves the nozzle at 100kPa $\,$ with a velocity of 180m/s. The inlet $\,$ area is $\,$ 80cm . The specific heat of air C_P is 1008J/kg.K.

54. The exit temperature of the air is

- (A) 516K
- (B) 532K
- (C) 484K
- (D) 468K

Answer: - (C)

55. The exit area of the nozzle in cm is

- (Δ) QO 1
- (B) 56.3
- (C) 4.4
- (D) 12.9

Answer: - (D)

Exp:- From continuity equation we get,

$$\begin{aligned} & \rho_1 A_1 V_1 = \rho_2 A_2 V_2 \\ & \frac{P_1}{RT_1} \times A_1 V_1 = \frac{P_2}{RT_2} \times A_2 V_2 \Omega A_2 = & \frac{P_1 T_2}{P_2 T_1} \times \frac{V_1}{V_2} \times A_1 \\ & A_2 = 300 \times & 484 \\ & \hline & 500 \times 100 & 180 \end{aligned}$$

Q. No. 56 œ 60 Carry One Mark Each

- 56. The cost function for a product in a firm is given by 5q, where q is the amount of production. The firm can sell the product at a market price of Rs.50 per unit. The number of units to be produced by the firm such that the profit is maximized is
 - (A) 5
- (B) 10
- (C) 15
- (D) 25

Answer: (A)

Exp:- P = 50q - 5q

2

	$\frac{ddpq = 50-10q}{d}$	$\frac{p}{q^2} < 0$			
	\therefore p is maximum at	50-10q= 0 or, q= 5			
	Else check with opt	ions			
57.	complete the follow Suresh's dog is the	one was hur	t in the stampede.		
Δ	(A) that	(B) which	(C) who	(D) whom	
Answe	r: (A)				
58.	Choose the gramm	atically INCORRECT se	entence:		
	(A) They gave us rupees.	the money back less	the service charges	s of Three Hundred	
	(B) This country's e	expenditure is not less th	nan that of Banglades	sh.	
	(C) The committee settled for a les	initially asked for a ser sum.	funding of Fifty Lak	h rupees, but later	
	(D) This country's 6	expenditure on education	nal reforms is very le	SS	
Answe	r: (D)				
59.	Which one of the fo	llowing options is the cl	osest in meaning to t	he word given	
	Mitigate				
	(A) Diminish	(B) Divulge	(C) Dedicate	(D) Denote	
Answe	r: (A)				
60.	Choose the most complete the follow	appropriate alternative ing sentence:	e from the options	given below to	
	Despite several conflict.	the mission s	ucceeded in its attem	pt to resolve the	
	(A) attempts	(B) setbacks	(C) meetings	(D) delegations	
Answe	r: (B)				
		Q. No. 61 œ 65 Carry T	wo Marks Each		
61.	Wanted Temporary, Part-time persons for the post of Field Interviewer to conduct personal interviews to collect and collate economic data. Requirements: High School-pass, must be available for Day, Evening and Saturday work. Transportation paid, expenses reimbursed.				
	Which one of the fo	llowing is the best infereinatory	ence from the above	advertisement?	
	(B) Xenophobic	-			
	(C) Not designed to make the post attractive				

(D) Not gender-discriminatory

Answer: (C)

Exp:- Gender is not mentioned in the advertisement and (B) clearly eliminated

62. Given the sequence of terms, AD CG FK JP, the next term is

(A) OV

- (B) OW
- (C) PV
- (D) PW

Answer: (A)

Exp:-

- 63. Which of the following assertions are CORRECT?
 - P: Adding 7 to each entry in a list adds 7 to the mean of the list
 - Q: Adding 7 to each entry in a list adds 7 to the standard deviation of the list
 - R: Doubling each entry in a list doubles the mean of the list
 - S: Doubling each entry in a list leaves the standard deviation of the list unchanged

(A) P, Q

- (B) Q, R
- (C) P, R
- (D) R, S

Answer: (C)

Exp:- P and R always holds true

Else consider a sample set {1, 2, 3, 4} and check accordingly

An automobile plant contracted to buy shock absorbers from two suppliers X and Y. X supplies 60% and Y supplies 40% of the shock absorbers. All shock absorbers are subjected to a quality test. The ones that pass the quality test are considered reliable. Of X's shock absorbers, 96% are reliable. Of Y's shock absorbers, 72% are reliable.

The probability that a randomly chosen shock absorber, which is found to be reliable, is made by Y is

- (A) 0.288
- (B) 0.334
- (C) 0.667
- (D) 0.720

Answer: (B)

Exp:-

	X
Supply	60%
Reliable	96%
Overall	0.576

у 40%

72% 0.288

$$\therefore P(x) = 0.288 = 0.334$$

- A political party orders an arch for the entrance to the ground in which the annual convention is being held. The profile of the arch follows the equation y = 2x 0.1x where y is the height of the arch in meters. The maximum possible height of the arch is
 - (A) 8 meters
- (B) 10 meters
- (C) 12 meters
- (D) 14 meters

Answer: (B)

Exp:- y = 2x - 0.1x

2

$$\frac{dy}{dx} = 2 - 0.2x$$

$$\frac{d^2y}{dx^2} < 0... \text{ y maximises at } 2 - 0.2x = 0$$

$$\Omega x = 10$$

$$\therefore y = 20 - 10 = 10m$$