WEP Attacks

- Initial connection sniffing
- IV Reuse
 - Look for IV collisions
 - Some APs reset IV to 0 each time system is (re)initialized
 - IV Dictionary Attacks
- Injection attacks with known plaintext
- Wi-fi Protected Access / 802.11i

IV Reuse Occurrences

- 1% after 582 encrypted frames
- 10% after 1,881 encrypted frames
- 50% after 4,823 encrypted frames
- 99% after 12,430 encrypted frames

Shared Secret Key Distribution

- How does Alice distribute the key?
- What happens if Scott leaves?

Secret Key Pairs

of Keys = n * (n - 1)/2Where n is the # of users

Asymmetric Key Encryption

PKE Algorithm Components

- One or more Prime Numbers
- Large integer factoring
- Modular arithmetic
- Big integer exponentiation
- Example Algorithms
 - Rivest-Shivar-Adelman (RSA)
 - Diffie-Hellman Key Exchange

RSA Public Key Encryption

- Developed by MIT professors Ron Rivest, Adi Shamir and Len Adleman (1977)
- Message blocks treated as a large number less that some number n
- Block size 2^k bits $\Rightarrow 2^k < n < 2^{k+1}$
- Relies on:
 - Large prime numbers
 - Large number factoring
 - Modular arithmetic

RSA Key Generation

- Select 2 prime numbers, p and q
- Let n = p * q
- Let $\phi(n) = (p-1)(q-1)$
- Pick e that is relatively prime to φ(n)
- Find $d \Rightarrow d = e^{-1} \mod \phi(n) \Rightarrow de = 1 \mod \phi(n)$
- Generated keys:
 - Public: e & n
 - Private: d & n

RSA Encryption & Decryption

- Encryption:
 - Break message into M sized blocks < n
 - Cipher C = M^e mod n
- Decryption:
 - Message M = C^d mod n

RSA Example

- Key Generation:
 - Let p = 5 and q = 11
 - -N = 5 * 11 = 55
 - $-\phi(n)=(5-1)(11-1)=40$
 - Let e = 3
 - Find d \Rightarrow 3d = 1 mod 40; d = 27
- Encrypt M = $5 \Rightarrow C = 5^3 \mod 55 = 15$
- Decrypt C \Rightarrow M = 15^{27} mod 55 = 5

Digital Signatures

One-Way Encryption

- Encryption function has no inverse
- Referred to as Hashes or Checksums
- Uses
 - Authentication Systems
 - File Integrity Checkers
 - Message Digests

Hash Functions

- Accept messages of any size and generated a small, fixed size output
- One way function
- Easy and fast to calculate
- Collision Resistant

XOR Example

- Break message into fixed length blocks
- XOR first element of all blocks
- Repeat for all elements

```
G 01000111
o 01101111
n 01101110
o 01101111
w 01100111
01011110
5 E
```

Not very collision resistant!!!

Source: <u>Classical and Contemporary Cryptology</u> by Richard J. Spillman

MD5 Hash

- Developed by Ron Rivest
- Generates a 128-bit hash
- Initialization
 - Pad message (1 followed by n 0s) such that the message size is 448 mod 512
 - (message size) mod 2⁶⁴ appended to message as 64-bit number
 - 4 32-bit registers used store intermediate and final results
 - 512-bit message block processed in 4 rounds, each consisting of 16 stages

MD5 Rounds

MD5 Stage

Diffie-Hellman Key Exchange

- Bob and Alice together select a prime number, p, and a base,
 g
- Alice:
 - Selects secret number a
 - Sends Bob g^a mod p
- Bob:
 - Selects secret number b
 - Sends Alice g^b mod p
- Shared secret: k
 - $k = (g^a \mod p)^b \mod p = (g^b \mod p)^a \mod p$
 - Used as key in symmetric cryptography algorithm