
Lecture 3#

• Processes and Job Control
• Privileged ,User and Group Accounts 
• Logs and audits



Processes and Job Control
• A Process is simply an instance of a running a program
• A process is said to be born when program starts 

executions and remains alive as long as the program is 
active. So after execution is complete a process is said 
to be die.

• A process also has name, usually the name of the 
program being executed. For e.g. when you execute the 
grep command a process name grep is created 

• However a process can be considered synonymous with 
a program when 2 users run the same program, there 
one program on disks but 2 process in memory 



1The UNIX process model
• New State:- the process being created
• Ready State: - the process is waiting to be 

assigned to a processor.
• Blocked State:- the process is in main memory 

and waiting for an events
• Blocked Suspended: - the process is in 

secondary memory and waiting for an event.
• Suspend / Ready:- the process is in secondary 

memory but is available for execution as soon 
as it is loaded into memory



• Exited State: - it is a process for which parent 
have decided not to waits for them after a 
process die for their cleaning purpose. So this 
process does not have any entry in process 
table.

• Zombie:- it is a process for which there parent 
have to waits for the completions ( possibly to 
clean after them) and system maintain its entry 
in process tables

• Preempted State:- it is a special case pf blocked 
state a process retaining from system calls ( 
hence after having run in kernel modes) to 
immediately blocked and put the ready process 
queue instead of returning ,leaving  CPU to 
another process. 



• All processes in UNIX are created using 
the fork() system call . UNIX implements 
through the fork() and exec() system calls 
an elegant two-step mechanism for 
process creation and execution. fork() is 
used to create the image of a process 
using the one of an existing one, and exec 
is used to execute a program by 
overwriting that image with the program's 
one.



• A call to fork() of the form: 
• #include <sys/types.h>pid_t 

childpid;...childpid = fork(); /* child's pid in 
the parent, 0 in the child */... creates (if it 
succeeds) a new process, which a child of 
the caller's, and is an exact copy of of the 
(parent) caller itself. By exact copy we 
mean that it's image is a physical bitwise 
copy of the parent's





UNIX Command for process:-
• Every Unix process has a process ID (PID) which can be 

used to refer to it, suspend it or kill it entirely 
• Processes can be stopped and started, or killed once 

and for all. The kill command does this and more. The 
kill command takes a number called a signal as an 
argument and another number

• called the process identifier or PID for short. Kill send 
signals to processes. Some of these are fatal and some 
are for information only. The two commands

• kill -15 127
• kill 127
• are identical. They both send signal 15 to PID 127. This 

is the normal termination signal and it is often enough to 
stop any process from running.



Process management command

• ps :To display the currently working processes
• top :Display all running process
• kill pid :Kill the process with given pid
• killall proc: Kill all the process named proc
• pkill pattern :Will kill all processes matching the 

pattern
• bg :List stopped or background jobs,resume a 

stopped job in the background
• fg: Brings the most recent job to foreground



• fg n: Brings job n to the foreground
• ps –x: gives information about currently-running 

processes that you own. These may be from 
other UNIX sessions than your current UNIX 
session. The name of each process is in the far 
right column, and the process id for each 
process is in the first column. (BEWARE: the 
options for ps vary on different flavors of UNIX 
and Linux 





Child processes and zombies
• When we start a process, the new process becomes a 

child of the original. If one of the children starts a new 
process then it will be a child of the child (a grandchild). 
Processes therefore form hierarchies. Several children 
can have a common parent. 

• All Unix user-processes are children of the initial process 
init, with process ID 1. If we kill a parent, then (unless the 
child has detached itself from the parent) all of its 
children die too.  If a child dies, the parent is not 
affected. Sometimes when a child is killed, it does not 
die but becomes defunct or a zombie process. 



• This means that the child has a parent which is waiting 
for it to finish. If the parent has not yet been informed 
that the child has died, because it has been suspended 
itself for instance, then the dead child is not completely 
removed from the kernel’s process table. When the 
parent wakes up and receives the message that the child 
has terminated (and its exit status), the process entry for 
the dead child can be remove 

• Most UNIX processes go through a zombie state, but 
most terminate so quickly that they cannot be seen. 

• It is not possible to kill a zombie process, since it is 
already dead. The only way to remove a zombie is to 
either reactivate the process which is waiting for it, or to 
kill that process 



The Windows process model
• Like UNIX, processes under Windows/NT can 

live in the foreground or in the background, 
though unlike UNIX, Windows does not fork 
processes by replicating existing ones. A 
background process can be started with

• start /B
• In order to kill the process it is necessary to 

purchase the Resource kit which contains a kill 
command. A background process detaches itself 
from a login session and can continue to run 
even when the user is logged out. 



Privileged accounts
• Operating systems that restrict user privileges need an 

account which can be used to configure and maintain the 
system. Such an account must have access to the whole 
system, without regard for restrictions. It is therefore 
called a privileged account.

• In UNIX the privileged account is called root, also 
referred to colloquially as the super-user. In Windows, 
the Administrator account is similar to UNIX’s root, 
except that the administrator does not have automatic 
access to everything as does root. Instead he/she must 
be first granted access to an object. However the 
Administrator always has the right to grant them self 
access to a resource 



• No one should use a privileged root or 
Administrator account as a user account. 
To do so is to place the system in 
jeopardy. Privilege should be exercised 
only when absolutely necessary.



Logs and audits
• Operating system kernels share resources and 

offer services. They can be asked to keep lists of 
transactions which have taken place so that one 
can later go back and see exactly what 
happened at a given time. This is called logging 
or auditing 

• Full system auditing involves logging every 
single operation that the computer performs. 
This consumes vast amounts of disk space and 
CPU time and is generally inadvisable unless 
one has a specific reason to audit the system. 



• Auditing has become an issue again in 
connection with security. Organizations 
have become afraid of break-ins from 
system crackers and want to be able to 
trace the activities of the system in order 
to be able to look back and find out the 
identity of a cracker. 

• One use for auditing is so-called non-
repudiation, or non-denial. 


