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Abstract  
Despite recent excitement generated by the peer-to-peer (P2P) paradigm and the surprisingly 
rapid deployment of some P2P applications, there are few quantitative evaluations of P2P systems 
behavior. The open architecture, achieved scale, and self-organizing structure of the Gnutella 
network make it an interesting P2P architecture to study. Like most other P2P applications, 
Gnutella builds, at the application level, a virtual network with its own routing mechanisms. The 
topology of this virtual network and the routing mechanisms used have a significant influence on 
application properties such as performance, reliability, and scalability. We have built a “ crawler” to 
extract the topology of Gnutella’s application level network. In this paper we analyze the topology 
graph and evaluate generated network traffic. The two major findings we focus on are:  
(1) although Gnutella is not a pure power-law network, its current configuration has the benefits 
and the drawbacks of a power-law structure, and (2) the Gnutella virtual network topology does not 
match well the underlying Internet topology, hence leading to ineffective use of the physical 
networking infrastructure. These findings guide us to propose changes to the Gnutella protocol and 
implementations that may bring significant performance and scalability improvements. Although 
Gnutella network might fade, we believe the P2P paradigm is here to stay. In this light, our findings 
as well as our measurement and analysis techniques bring precious insight into P2P system 
design tradeoffs.  
Keywords: peer-to-peer system evaluation, self-organized networks, power-law network, 
topology analysis. 

 
1.  Introduction  
Peer-to-peer systems (P2P) have emerged as a significant social and technical phenomenon over the last year. 
They provide infrastructure for communities that share CPU cycles (e.g., SETI@Home, Entropia) and/or storage 
space (e.g., Napster, FreeNet, Gnutella), or that support collaborative environments (Groove). Two factors have 
fostered the recent explosive growth of such systems: first, the low cost and high availability of large numbers of 
computing and storage resources, and second, increased network connectivity. As these trends continue, the 
P2P paradigm is bound to become more popular. 
 
Unlike traditional distributed systems, P2P networks aim to aggregate large numbers of computers that 
join and leave the network frequently and that might not have permanent network (IP) addresses.  In 
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pure P2P systems, individual computers communicate directly with each other and share information and 
resources without using dedicated servers. A common characteristic of this new breed of systems is that they 
build, at the application level, a virtual network with its own routing mechanisms. The topology of the virtual 
network and the routing mechanisms used have a significant impact on application properties such as 
performance, reliability, and, in some cases, anonymity. The virtual topology also determines the communication 
costs associated with running the P2P application, both at individual hosts and in the aggregate. Note that the 
decentralized nature of pure P2P systems means that these properties are emergent properties, determined by 
entirely local decisions made by individual resources, based only on local information: we are dealing with a self-
organized network of independent entities.  
These considerations have motivated us to conduct a detailed study of the topology and protocols of a popular 
P2P system: Gnutella. In this study, we benefited from Gnutella’s large existing user base and open architecture, 
and, in effect, use the public Gnutella network as a large-scale, if uncontrolled, testbed. We proceeded as 
follows. First, we captured the network topology, its generated traffic, and dynamic behavior. Then, we used this 
raw data to perform a macroscopic analysis of the network, to evaluate costs and benefits of the P2P approach, 
and to investigate possible improvements that would allow better scaling and increased reliability.  
Our measurements and analysis of the Gnutella network are driven by two primary questions. The first concerns 
its connectivity structure. Recent research [1,8,7] shows that networks as diverse as natural networks formed by 
molecules in a cell, networks of people in a social group, or the Internet, organize themselves so that most nodes 
have few links while a tiny number of nodes, called hubs, have a large number of links. [14] finds that networks 
following this organizational pattern (power-law networks) display an unexpected degree of robustness: the ability 
of their nodes to communicate is unaffected even by extremely high failure rates. However, error tolerance comes 
at a high price: these networks are vulnerable to attacks, i.e., to the selection and removal of a few nodes that 
provide most of the network’s connectivity. We show here that, although Gnutella is not a pure power-law 
network, it preserves good fault tolerance characteristics while being less dependent than a pure power-law 
network on highly connected nodes that are easy to single out (and attack).  
The second question concerns how well (if at all) Gnutella virtual network topology maps to the physical Internet 
infrastructure. There are multiple reasons to analyze this issue. First, it is a question of crucial importance for 
Internet Service Providers (ISP): if the virtual topology does not follow the physical infrastructure, then the 
additional stress on the infrastructure and, consequently, the costs for ISPs, are immense. This point has been 
raised on various occasions [9,12] but, as far as we know, we are the first to provide a quantitative evaluation on 
P2P application and Internet topology (mis)matching. Second, the scalability of any P2P application is ultimately 
determined by its efficient use of underlying resources.  
We are not the first to analyze the Gnutella network. In particular, the Distributed Search Solutions (DSS) group 
[15] has published results of their Gnutella surveys [4,5], and others have used their data to analyze Gnutella 
users’ behavior [2] and to analyze search protocols for power-law networks [6]. However, our network crawling 
and analysis technology (developed independently of this work) goes significantly further in terms of scale (both 
spatial and temporal) and sophistication. While DSS presents only raw facts about the network, we analyze the 
generated network traffic, find patterns in network organization, and investigate its efficiency in using the 
underlying network infrastructure.  
The rest of the paper is structured as follows: the next section succinctly describes Gnutella protocol and 
application. Section 3 introduces the crawler we developed to discover Gnutella’s virtual network 
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topology. In Section 4 we analyze the network and answer the questions introduced in the previous paragraphs. 
We conclude in Section 5. 
 
2.  Gnutella Protocol: Design Goals and Description  
The Gnutella protocol [3] is an open, decentralized group membership and search protocol, mainly used for file 
sharing. The term Gnutella also designates the virtual network of Internet accessible hosts running Gnutella-
speaking applications (this is the “ Gnutella network” we measure) and a number of smaller, and often private, 
disconnected networks.  
As most P2P file sharing applications, Gnutella protocol was designed to meet the following goals:  
o  Ability to operate in a dynamic environment. P2P applications operate in dynamic environments, where hosts 

may join or leave the network frequently. They must achieve flexibility in order to keep operating 
transparently despite a constantly changing set of resources.  

o  Performance and Scalability. P2P paradigm shows its full potential only on large-scale deployments where the 
limits of the traditional client/server paradigm become obvious. Moreover, scalability is important as P2P 
applications exhibit what economists call the “ network effect” [10]: the value of a network to an individual 
user increases with the total number of users participating in the network. Ideally, when increasing the 
number of nodes, aggregate storage space and file availability should grow linearly, response time should 
remain constant, while search throughput should remain high or grow.  

o  Reliability. External attacks should not cause significant data or performance loss.  
o  Anonymity. Anonymity is valued as a means to protect privacy of people seeking or providing information that 

may not be popular.  
Gnutella nodes, called servents by developers, perform tasks normally associated with both SERVers and 
cliENTS. They provide client-side interfaces through which users can issue queries and view search results, 
accept queries from other servents, check for matches against their local data set, and respond with 
corresponding results. These nodes are also responsible for managing the background traffic that spreads the 
information used to maintain network integrity.  
In order to join the system a new node/servent initially connects to one of several known hosts that are almost 
always available (e.g., gnutellahosts.com). Once attached to the network (having one or more open connections 
with nodes already in the network), nodes send messages to interact with each other. Messages can be 
broadcasted (i.e., sent to all nodes with which the sender has open TCP connections) or simply back-propagated 
(i.e., sent on a specific connection on the reverse of the path taken by an initial, broadcasted, message). Several 
features of the protocol facilitate this broadcast/back-propagation mechanism. First, each message has a 
randomly generated identifier. Second, each node keeps a short memory of the recently routed messages, used 
to prevent re-broadcasting and implement back-propagation. Third, messages are flagged with time-to-live (TTL) 
and “ hops passed” fields. 
 
The messages allowed in the network are:  

Group Membership (PING and PONG) Messages. A node joining the network initiates a broadcasted PING 
message to announce its presence. When a node receives a PING message it forwards it to its neighbors and 
initiates a back-propagated PONG message. The PONG message contains information about the node such 
as its IP address and the number and size of shared files.   
Search (QUERY and QUERY RESPONSE) Messages. QUERY messages contain a user specified search 
string, each receiving node matches against locally stored file names. QUERY messages are  
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broadcasted. QUERY RESPONSES are back-propagated replies to QUERY messages and include 
information necessary to download a file.  
File Transfer (GET and PUSH) Messages. File downloads are done directly between two peers using 
GET/PUSH messages.   

To summarize: to become a member of the network, a servent (node) has to open one or many connections with 
nodes that are already in the network. In the dynamic environment where Gnutella operates, nodes often join and 
leave and network connections are unreliable. To cope with this environment, after joining the network, a node 
periodically PINGs its neighbors to discover other participating nodes. Using this information, a disconnected 
node can always reconnect to the network. Nodes decide where to connect in the network based only on local 
information, and thus forming a dynamic, self-organizing network of independent entities. This virtual, application 
level network has Gnutella servents at its nodes and open TCP connections as its links. In the following sections 
we present our solution to discover this network topology and analyze its characteristics. 
 
3.  Data Collection: The Crawler  
We have developed a crawler that joins the network as a servent and uses the membership protocol (the  
PING-PONG mechanism) to collect topology information.  In this section we briefly describe the crawler  
and discuss other issues related to data collection.  
The crawler starts with a list of nodes, initiates a TCP connection to each node in the list, sends a generic join-in 
message (PING), and discovers the neighbors of the node it contacted based on the replies it gets back (PONG 
messages). Newly discovered neighbors are added to the list. For each discovered node the crawler stores its IP 
address, port, the number of files and the total space shared. We started with a short, publicly available list of 
initial nodes, but in time we have incrementally built our own list with more than 400,000 nodes that have been 
active at one time or another.  
We first developed a sequential version of the crawler. Using empirically determined optimal values for 
connection establishment timeout as well as for connection listening timeout (the time interval the crawler waits to 
receive PONGs after it has sent a PING), a sequential crawl of the network proved slow: about 50 hours even for 
a small network (4000 nodes). This slow search speed has two disadvantages: not only it is not scalable, but 
because of the dynamic network behavior, the result of our crawl is far from a network topology snapshot.  
In order to reduce the crawling time, we next developed a distributed crawling strategy. Our distributed crawler 
has a client/server architecture: the server is responsible with managing the list of nodes to be contacted, 
assembling the final graph, and assigning work to clients. Clients receive a small list of initial points and discover 
the network topology around these points. Although we could use a large number of clients (easily in the order of 
hundreds), we decided to use only up to 50 clients in order to reduce the invasiveness of our search. These 
techniques have allowed us to reduce the crawling time to a couple of hours even for a large list of starting points 
and a discovered topology graph with more than 30,000 active nodes.  
Note that in the following we use a conservative definition of network membership: we exclude the nodes that, 
although were reported as part of the network, our crawler could not connect to. This situation might occur when 
the local servent is configured to allow only a limited number of TCP connections or when the node leaves the 
network before the crawler contacts it. 
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tradeoff between discovery time and invasiveness of our crawler. Increasing the number of parallel crawling tasks 
reduces discovery time but increases the burden on the application. Obviously, the Gnutella map our crawler 
produces is not an exact ‘snapshot’ of the network. However, we argue that the network graph we obtain is close 
to a snapshot in a statistical sense: all properties of the network: size, diameter, average connectivity, and 
connectivity distribution are preserved. 
 
4.1 Estimate of Gnutella Generated Traffic  
We used a modified version of the crawler to eavesdrop the traffic generated by the network. In Figure 2 we 
classify, according to message type, the traffic that goes across one randomly chosen link in November 2000. 
After adjusting for message size, we find that, on average, only 36% of the total traffic (in bytes) is user-
generated traffic (QUERY messages). The rest is overhead traffic: 55% used to maintain group membership 
(PING and PONG messages) while 9% contains either non-standard messages (1%) or PUSH messages 
broadcast by servents that are not compliant with the latest version of the protocol. Apparently, by June 2001, 
these engineering problems were solved with the arrival of newer Gnutella implementations: generated traffic 
contains 92% QUERY messages, 8% PING messages and insignificant levels of other message types.  
Given the small diameter of the network (any two nodes are generally less than 7 hops away, see Figure 3), the 
message time-to-live (TTL=7) preponderantly used, and the flooding-based routing algorithm employed, most 
links support similar traffic. We verified this theoretical conclusion by measuring the traffic at multiple, randomly 
chosen, nodes. As a result, the total Gnutella generated traffic is proportional to the number of connections in the 
network. Based on our measurements we estimate the total traffic (excluding file transfers) for a large Gnutella 
network as 1Gbps (170,000 connections for a 50,000 nodes large Gnutella network times 6Kbps per connection) 
or about 330TB/month. To put this traffic volume into perspective we note that it amounts to about 1.7% of total 
traffic in US Internet backbones in December 2000 (as reported in [16]). We infer that the volume of generated 
traffic is an important obstacle for further growth and that efficient use of underlying network infrastructure is 
crucial for better scaling and wider deployment. 
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are at most 7 hops away connections per node).  

One interesting feature of the network is that, over a seven-month period, with the network scaling up almost two 
orders of magnitude, the average number of connections per node remained constant 
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(Figure 4). Assuming this invariant holds, it is possible to estimate the generated traffic for larger networks and 
find scalability limits based on available bandwidth. 
 
4.2.  Connectivity and Reliability in Gnutella Network. Power-law Distributions.  
When analyzing global connectivity and reliability patterns in the Gnutella network, it is important to keep in mind 
the self-organized network behavior: users decide only the maximum number of connections a node should 
support, while nodes decide whom to connect to or when to drop/add a connection based only on local 
information.  
Recent research [1,7,8,13] shows that many natural networks such as molecules in a cell, species in an 
ecosystem, and people in a social group organize themselves as so called power-law networks. In these 
networks most nodes have few links and a tiny number of hubs have a large number of links. More specifically, in 
a power-law network the fraction of nodes with L links is proportional to L k , where k is a network dependent 
constant.  
This structure helps explaining why networks ranging from metabolisms to ecosystems to the Internet are 
generally highly stable and resilient, yet prone to occasional catastrophic collapse[14]. Since most nodes 
(molecules, Internet routers, Gnutella servents) are sparsely connected, little depends on them: a large fraction 
can be taken away and the network stays connected. But, if just a few highly connected nodes are eliminated, 
the whole system could crash. One implication is that these networks are extremely robust when facing random 
node failures, but vulnerable to well-planned attacks.  
Given the diversity of networks that exhibit power-law structure and their properties we were interested to 
determine whether Gnutella falls into the same category. Figure 5 presents the connectivity distribution in Nov. 
2000. Although data are noisy (due to the small size of the networks), we can easily recognize the signature of a 
power-law distribution: the connectivity distribution appears as a line on a log-log plot. [6,4] confirm that early 
Gnutella networks were power-law. Later measurements (Figure 6) however, show that more recent networks 
move away from this organization: there are too few nodes with low connectivity to form a pure power-law 
network. In these networks the power-law distribution is preserved for nodes with more than 10 links while nodes 
with fewer link follow an almost constant distribution. 
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An interesting issue is the impact of this new, multi-modal distribution on network reliability. We believe that the 
more uniform connectivity distribution preserves the network capability to deal with random node failures while 
reducing the network dependence on highly connected, easy to single out (and attack) nodes. 
 
4.3. Internet Infrastructure and Gnutella Network  
Peer-to-peer computing brings an important change to the way we use the Internet: it enables computers sitting 
at the edges of the network to act as both clients and servers. As a result, P2P applications radically change the 
amount of bandwidth the average Internet user consumes. Most Internet Service Providers (ISP) use flat rates to 
bill their clients. If P2P applications become ubiquitous, they could break the existing business models of many 
ISPs and force them to change their pricing scheme [9]. 
 
Given the considerable traffic volume a P2P application generates (see our Gnutella estimates in previous 
section) it is crucial that it employs well available networking resources. The scalability of a P2P application is 
ultimately determined by how efficiently it uses the underlying network. Gnutella’s store-and-forward architecture 
makes the virtual network topology extremely important. The larger the mismatch between the network 
infrastructure and the P2P application’s virtual topology, the bigger the “ stress” on the infrastructure. In the 
following we investigate whether the self-organizing Gnutella network shapes its topology to map well on the 
physical infrastructure.  
Let us first present an example to highlight the importance of a “ fitting” virtual topology. In Figure 7, eight hosts 
participate in a Gnutella like network. We use black, solid lines to present the underlying network infrastructure 
and blue, dotted lines for application virtual topology. In the left picture, the virtual topology closely matches the 
infrastructure. In the right picture, the virtual topology, although functionally similar, does not match the 
infrastructure. In this case the traffic the link D-E has to support is six times higher.  

A  F A  F  E  E 
 

B D B 

G  G  D  
 

C H C H 
 
 
 

Figure 7: Gnutella’s virtual network topology (blue, dotted arrows) mapping on the underlying 
network infrastructure (black). Left picture: perfect mapping. Right picture: inefficient mapping; 
link D-E needs to support six times higher traffic. 

 
Unfortunately, it is prohibitively expensive to map Gnutella on the Internet detailed topology (firstly, due to the 
inherent difficulty of extracting Internet topology and secondly, due to the computational scale of the problem). 
Instead, we proceed with two high level experiments that highlight the mismatch between the topologies of the 
two networks.  
The Internet is a collection of Autonomous Systems (AS) which are connected by routers. ASs, in turn, are 
collections of local area networks under a single technical administration. From an ISP point of view traffic 
crossing AS borders is more expensive than local traffic. We found that only 2-5% of Gnutella connections link 
nodes located within the same AS, although more than 40% of these nodes 
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are located in the top ten ASs. This indicates that, although unforced by node distribution, most Gnutella 
generated traffic crosses AS border being thus more expensive to handle.  
In the second experiment we assume that the hierarchical organization of domain names mirrors that of the 
Internet infrastructure. For example, it is likely that communication costs between two hosts in the “ 
uchicago.edu” domain are significantly smaller than between “ uchicago.edu” and “ sdsc.edu.” The underlying 
assumption here is that domain names express some sort of organizational hierarchy and that organizations tend 
to build networks that exploit locality within that hierarchy.  
In order to study how well Gnutella virtual topology maps on to the Internet partitioning as defined by domain 
names, we divide the Gnutella virtual topology graph into clusters, i.e., subgraphs with high interior connectivity. 
Given the flooding-like routing algorithm used by Gnutella, it is within these clusters that most load is generated. 
We are therefore interested to see how well these clusters map on the partitioning defined by the domain naming 
scheme.  
We use a simple clustering algorithm based on the connectivity distribution described earlier: we define as 
clusters subgraphs formed by one hub with its adjacent nodes. If two clusters have more than 25% nodes in 
common, we merge them. After the clustering is done, we (1) assign nodes that are included in more than one 
cluster only to the largest cluster and (2) form a last cluster with nodes that are not included in any other cluster.  
We define the entropy [24] of a set C, containing |C| hosts, each labeled with one of the n distinct domain names, 
as:  

n 
E(C) � pi log(pi) (1pi ) log(1pi) ,  

i �1  
where  pi  is the probability of randomly picking a host with domain name i. 
 
We then define the entropy of a clustering of a graph of size |C|, clustered in k clusters C1 , C2 ,..., Ck of sizes C1 , 
C2 ,..., Ck , with C � C1  C2  ...  Ck , as: 

k       
Ci 

   

E(C1 , C2 ,...Ck ) � 

         

* E(Ci ) 

            

 
 

C1 

 



 

C2 

 

 ...  Ck
    

i �1       
We  base  our  reasoning  on  the  property that  E(C) � E(C1 , C2 ,..., Ck )  no  matter  how  the  clusters  
C1 , C2 ,..., Ck are chosen. If the clustering matches the domain partitioning, then we should find that E(C) �� 
E(C1 , C2 ,..., Ck ) . Conversely, if the clustering C1 , C2 ,..., Ck has the same level of  
randomness as in the initial set C, then the entropy should remain largely unchanged. Essentially, the entropy 
function is used here to measure how well the two partitions applied on set nodes match: the first partition uses 
the information contained in domain names, while the second uses the clustering heuristic. Note that a large 
class of data mining and machine learning algorithms based on information gains (ID3, C4.5, etc. [25]) use a 
similar argument to build their decision trees.  
We performed this analysis on 10 topology graphs collected during February/March 2001. We detected no 
significant decrease in entropy after performing the clustering (all decreases were within less than 8% from the 
initial entropy value). Consequently, we conclude that Gnutella nodes cluster in a way that is completely 
independent from the Internet structure. Assuming that the Internet domain name structure roughly matches the 
underlying topology (the cost of sending data within a domain is smaller than that of sending data across 
domains), we conclude that the self-organizing Gnutella network does not efficiently use the underlying physical 
infrastructure. 
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5.  Summary and Potential Improvements  
Sociological circumstances that have fostered the success of Gnutella network might change and the network 
might fade. P2P, however, “ is one of those rare ideas that is simply too good to go away” [18]. Despite recent 
excitement generated by this paradigm and the surprisingly rapid deployment of some P2P applications, there 
are few quantitative evaluations of P2P systems behavior. The open architecture, achieved scale, and self-
organizing structure of the Gnutella network make it an interesting P2P architecture to study. Our measurement 
and analysis techniques can be used for most P2P systems to enhance general understanding of design 
tradeoffs.  
Our analysis shows that Gnutella node connectivity follows a multi-modal distribution: combining a power law and 
a quasi-constant distribution. This property keeps the network as reliable as a pure power-law network when 
assuming random node failures, and makes it harder to attack by a malicious adversary. Gnutella takes few 
precautions to ward off potential attacks. For example, the network topology information that we obtain here is 
easy to obtain and would permit highly efficient denial-of-service attacks. Some form of security mechanisms that 
would prevent an intruder to gather topology information appears essential for the long-term survival of the 
network.  
We have estimated that, as of June 2001, the network generates about 330TB/month only to remain connected 
and broadcast user queries. This traffic volume represents a significant fraction of the total Internet traffic and 
makes the future growth of Gnutella network particularly dependent on efficient network usage. We have also 
documented the topology mismatch between the self-organized, application level Gnutella network and the 
underlying physical networking infrastructure. We believe this has major implications for the scalability of the 
Internet (or, equivalently, for the business models of ISPs). This problem must be solved if Gnutella or similarly 
built systems are to reach larger deployment.  
We see two directions for improvement. First, we observe that the application-level topology determines the 
volume of generated traffic, the search success rate, and the application reliability. We imagine an agent that 
constantly monitors the network and intervenes by asking servents to drop or add links as necessary to keep the 
network topology efficient. Additionally, agents (or nodes) could learn about the underlying physical network and 
build the virtual application topology accordingly. Note that implementing this idea requires some minimal protocol 
modifications.  
A second, orthogonal, direction is to replace flooding with a smarter (less expensive in terms of communication 
costs) routing and group communication mechanism. Recent research projects: Chord [19], CAN [21], SDS [23] 
or OceanStore [22] focus on building Intenet scale overlay networks and offer a vast array of choices future 
Gnutella implementations could build on. 
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