

Peer-to-Peer Architecture Case Study

Abstract
Despite recent excitement generated by the peer-to-peer (P2P) paradigm and the surprisingly
rapid deployment of some P2P applications, there are few quantitative evaluations of P2P systems
behavior. The open architecture, achieved scale, and self-organizing structure of the Gnutella
network make it an interesting P2P architecture to study. Like most other P2P applications,
Gnutella builds, at the application level, a virtual network with its own routing mechanisms. The
topology of this virtual network and the routing mechanisms used have a significant influence on
application properties such as performance, reliability, and scalability. We have built a “ crawler” to
extract the topology of Gnutella’s application level network. In this paper we analyze the topology
graph and evaluate generated network traffic. The two major findings we focus on are:
(1) although Gnutella is not a pure power-law network, its current configuration has the benefits
and the drawbacks of a power-law structure, and (2) the Gnutella virtual network topology does not
match well the underlying Internet topology, hence leading to ineffective use of the physical
networking infrastructure. These findings guide us to propose changes to the Gnutella protocol and
implementations that may bring significant performance and scalability improvements. Although
Gnutella network might fade, we believe the P2P paradigm is here to stay. In this light, our findings
as well as our measurement and analysis techniques bring precious insight into P2P system
design tradeoffs.
Keywords: peer-to-peer system evaluation, self-organized networks, power-law network,
topology analysis.

1. Introduction
Peer-to-peer systems (P2P) have emerged as a significant social and technical phenomenon over the last year.
They provide infrastructure for communities that share CPU cycles (e.g., SETI@Home, Entropia) and/or storage
space (e.g., Napster, FreeNet, Gnutella), or that support collaborative environments (Groove). Two factors have
fostered the recent explosive growth of such systems: first, the low cost and high availability of large numbers of
computing and storage resources, and second, increased network connectivity. As these trends continue, the
P2P paradigm is bound to become more popular.

Unlike traditional distributed systems, P2P networks aim to aggregate large numbers of computers that
join and leave the network frequently and that might not have permanent network (IP) addresses. In

 An extended version of this paper was published as University of Chicago Technical Report TR-2001-26.

 1

pure P2P systems, individual computers communicate directly with each other and share information and
resources without using dedicated servers. A common characteristic of this new breed of systems is that they
build, at the application level, a virtual network with its own routing mechanisms. The topology of the virtual
network and the routing mechanisms used have a significant impact on application properties such as
performance, reliability, and, in some cases, anonymity. The virtual topology also determines the communication
costs associated with running the P2P application, both at individual hosts and in the aggregate. Note that the
decentralized nature of pure P2P systems means that these properties are emergent properties, determined by
entirely local decisions made by individual resources, based only on local information: we are dealing with a self-
organized network of independent entities.
These considerations have motivated us to conduct a detailed study of the topology and protocols of a popular
P2P system: Gnutella. In this study, we benefited from Gnutella’s large existing user base and open architecture,
and, in effect, use the public Gnutella network as a large-scale, if uncontrolled, testbed. We proceeded as
follows. First, we captured the network topology, its generated traffic, and dynamic behavior. Then, we used this
raw data to perform a macroscopic analysis of the network, to evaluate costs and benefits of the P2P approach,
and to investigate possible improvements that would allow better scaling and increased reliability.
Our measurements and analysis of the Gnutella network are driven by two primary questions. The first concerns
its connectivity structure. Recent research [1,8,7] shows that networks as diverse as natural networks formed by
molecules in a cell, networks of people in a social group, or the Internet, organize themselves so that most nodes
have few links while a tiny number of nodes, called hubs, have a large number of links. [14] finds that networks
following this organizational pattern (power-law networks) display an unexpected degree of robustness: the ability
of their nodes to communicate is unaffected even by extremely high failure rates. However, error tolerance comes
at a high price: these networks are vulnerable to attacks, i.e., to the selection and removal of a few nodes that
provide most of the network’s connectivity. We show here that, although Gnutella is not a pure power-law
network, it preserves good fault tolerance characteristics while being less dependent than a pure power-law
network on highly connected nodes that are easy to single out (and attack).
The second question concerns how well (if at all) Gnutella virtual network topology maps to the physical Internet
infrastructure. There are multiple reasons to analyze this issue. First, it is a question of crucial importance for
Internet Service Providers (ISP): if the virtual topology does not follow the physical infrastructure, then the
additional stress on the infrastructure and, consequently, the costs for ISPs, are immense. This point has been
raised on various occasions [9,12] but, as far as we know, we are the first to provide a quantitative evaluation on
P2P application and Internet topology (mis)matching. Second, the scalability of any P2P application is ultimately
determined by its efficient use of underlying resources.
We are not the first to analyze the Gnutella network. In particular, the Distributed Search Solutions (DSS) group
[15] has published results of their Gnutella surveys [4,5], and others have used their data to analyze Gnutella
users’ behavior [2] and to analyze search protocols for power-law networks [6]. However, our network crawling
and analysis technology (developed independently of this work) goes significantly further in terms of scale (both
spatial and temporal) and sophistication. While DSS presents only raw facts about the network, we analyze the
generated network traffic, find patterns in network organization, and investigate its efficiency in using the
underlying network infrastructure.
The rest of the paper is structured as follows: the next section succinctly describes Gnutella protocol and
application. Section 3 introduces the crawler we developed to discover Gnutella’s virtual network

 2

topology. In Section 4 we analyze the network and answer the questions introduced in the previous paragraphs.
We conclude in Section 5.

2. Gnutella Protocol: Design Goals and Description
The Gnutella protocol [3] is an open, decentralized group membership and search protocol, mainly used for file
sharing. The term Gnutella also designates the virtual network of Internet accessible hosts running Gnutella-
speaking applications (this is the “ Gnutella network” we measure) and a number of smaller, and often private,
disconnected networks.
As most P2P file sharing applications, Gnutella protocol was designed to meet the following goals:
o Ability to operate in a dynamic environment. P2P applications operate in dynamic environments, where hosts

may join or leave the network frequently. They must achieve flexibility in order to keep operating
transparently despite a constantly changing set of resources.

o Performance and Scalability. P2P paradigm shows its full potential only on large-scale deployments where the
limits of the traditional client/server paradigm become obvious. Moreover, scalability is important as P2P
applications exhibit what economists call the “ network effect” [10]: the value of a network to an individual
user increases with the total number of users participating in the network. Ideally, when increasing the
number of nodes, aggregate storage space and file availability should grow linearly, response time should
remain constant, while search throughput should remain high or grow.

o Reliability. External attacks should not cause significant data or performance loss.
o Anonymity. Anonymity is valued as a means to protect privacy of people seeking or providing information that

may not be popular.
Gnutella nodes, called servents by developers, perform tasks normally associated with both SERVers and
cliENTS. They provide client-side interfaces through which users can issue queries and view search results,
accept queries from other servents, check for matches against their local data set, and respond with
corresponding results. These nodes are also responsible for managing the background traffic that spreads the
information used to maintain network integrity.
In order to join the system a new node/servent initially connects to one of several known hosts that are almost
always available (e.g., gnutellahosts.com). Once attached to the network (having one or more open connections
with nodes already in the network), nodes send messages to interact with each other. Messages can be
broadcasted (i.e., sent to all nodes with which the sender has open TCP connections) or simply back-propagated
(i.e., sent on a specific connection on the reverse of the path taken by an initial, broadcasted, message). Several
features of the protocol facilitate this broadcast/back-propagation mechanism. First, each message has a
randomly generated identifier. Second, each node keeps a short memory of the recently routed messages, used
to prevent re-broadcasting and implement back-propagation. Third, messages are flagged with time-to-live (TTL)
and “ hops passed” fields.

The messages allowed in the network are:

Group Membership (PING and PONG) Messages. A node joining the network initiates a broadcasted PING
message to announce its presence. When a node receives a PING message it forwards it to its neighbors and
initiates a back-propagated PONG message. The PONG message contains information about the node such
as its IP address and the number and size of shared files.
Search (QUERY and QUERY RESPONSE) Messages. QUERY messages contain a user specified search
string, each receiving node matches against locally stored file names. QUERY messages are

 3

broadcasted. QUERY RESPONSES are back-propagated replies to QUERY messages and include
information necessary to download a file.
File Transfer (GET and PUSH) Messages. File downloads are done directly between two peers using
GET/PUSH messages.

To summarize: to become a member of the network, a servent (node) has to open one or many connections with
nodes that are already in the network. In the dynamic environment where Gnutella operates, nodes often join and
leave and network connections are unreliable. To cope with this environment, after joining the network, a node
periodically PINGs its neighbors to discover other participating nodes. Using this information, a disconnected
node can always reconnect to the network. Nodes decide where to connect in the network based only on local
information, and thus forming a dynamic, self-organizing network of independent entities. This virtual, application
level network has Gnutella servents at its nodes and open TCP connections as its links. In the following sections
we present our solution to discover this network topology and analyze its characteristics.

3. Data Collection: The Crawler
We have developed a crawler that joins the network as a servent and uses the membership protocol (the
PING-PONG mechanism) to collect topology information. In this section we briefly describe the crawler
and discuss other issues related to data collection.
The crawler starts with a list of nodes, initiates a TCP connection to each node in the list, sends a generic join-in
message (PING), and discovers the neighbors of the node it contacted based on the replies it gets back (PONG
messages). Newly discovered neighbors are added to the list. For each discovered node the crawler stores its IP
address, port, the number of files and the total space shared. We started with a short, publicly available list of
initial nodes, but in time we have incrementally built our own list with more than 400,000 nodes that have been
active at one time or another.
We first developed a sequential version of the crawler. Using empirically determined optimal values for
connection establishment timeout as well as for connection listening timeout (the time interval the crawler waits to
receive PONGs after it has sent a PING), a sequential crawl of the network proved slow: about 50 hours even for
a small network (4000 nodes). This slow search speed has two disadvantages: not only it is not scalable, but
because of the dynamic network behavior, the result of our crawl is far from a network topology snapshot.
In order to reduce the crawling time, we next developed a distributed crawling strategy. Our distributed crawler
has a client/server architecture: the server is responsible with managing the list of nodes to be contacted,
assembling the final graph, and assigning work to clients. Clients receive a small list of initial points and discover
the network topology around these points. Although we could use a large number of clients (easily in the order of
hundreds), we decided to use only up to 50 clients in order to reduce the invasiveness of our search. These
techniques have allowed us to reduce the crawling time to a couple of hours even for a large list of starting points
and a discovered topology graph with more than 30,000 active nodes.
Note that in the following we use a conservative definition of network membership: we exclude the nodes that,
although were reported as part of the network, our crawler could not connect to. This situation might occur when
the local servent is configured to allow only a limited number of TCP connections or when the node leaves the
network before the crawler contacts it.

 4

f

w

4. Gnutella
We start by
(Section 4.1)
generated tra
further growt
(Section 4.2)
4.3).
Figure 1 pres
2000, Februa
network we f
Gnutella’s fa
component g
We identify th
we argue in S
Second, the
(based on tra
as the overal
this number
resources by
It is worth m
component a
component u

r

 50

rk

40

30

20

10

 -

00
Figure 1: G
the numbe
component
2000, Feb./
significantly
(24-28 May
more people

Using record
about 40% o
than 24 hours

Network Ana
presenting b

), although o
affic volume
th. We contin
 and then the

sents the grow
ary/March 20
found had 2,0
ailure to scale

rew about 25
hree factors t
Section 4.1, c
network conn

acing DNS ho
l network size
grew to abo
 sending nod

mentioning th
always include
sually has les

Gnutella

00

00

00
 /

8/
00

02

/2
7/

01

01

Gnutella netwo
r of nodes
in the networ
/March 2001

a larger ne
y) and Than
e are online.

ds of success
f the nodes le
s. Given this d

alysis
briefly Gnute
ver the past
represents a
nue with a m
e mapping of

wth of the Gn
01, and May

063 hosts, this
e has been

5 times (admit
that allowed t
careful engine
nectivity of G
ost names) is
e. While in No
ut 41% six m
es with low a

hat the numb
es more than
ss than 10 no

Network Gro

01

01

01

01

01

01

01

ork growth. T
in the lar

rk. Data colle
 and May 2

etwork around
nksgivings, w

sive crawls, w
eave the netw
dynamic beha

lla network g
6 months G
significant p

macroscopic a
the Gnutella

nutella networ
2001. While

s grew to 14,
predicted tim
ttedly from a l
the network t
eering led to s
Gnutella partic
s that the num
ovember 2000
months later.
vailable band

ber of conne
 95% of the a

odes.

owth .

01

03
/2

4/
01

05

/1
2/

01

01

01

01

The plot prese
rgest connec

ected during N
2001. We fo
d Memorial
when appare

we investigat
work in less t
avior, it is imp

growth trends
Gnutella overh
percentage of
analysis of th
topology to t

rk in the past
 in Novembe
,949 hosts in

me and again
low base) in t
his exception
significant ove
cipating mach
mber of DSL
0 about 24%
Finally, the

dwidth at the e
cted compon
active nodes

01

01

ents
cted
Nov.
ound
Day

ently

od

25

20

15

 10

 5

 -
 1

Figure
2000 c
period
that s
formed
user t
more e

te the dynam
than 4 hours,
portant to find

s and dynam
head traffic h
f total Interne
he network: w
the underlying

6 months. W
er 2000 the la

March and 4
n, the numbe
the past 6 mo
nal growth in
erhead traffic
hines improve
or cable-conn
of the nodes
efforts made
edges of the n
nents is relat
discovered, w

 Me

1 30

59

88

11

e 2: Generat
classified by

d. Note that o
serve only to
d more than
traffic is QU
efficient by M

mic graph stru
 while only 2

d the appropri

mic behavior.
has been dec
et traffic and
we study firs
g networking

We ran our cra
argest connec
48,195 hosts
er of nodes i
onths.
response to

c decreases o
ed significant
nected mach
were DSL or

e to better us
network even
tively small:
while the sec

essage Frequ

7 14 6 17 5 20 4 23

ted traffic (me
message typ

overhead traf
o maintain n
50% of the t

UERY messa
ay 2001.

ucture over ti
5% of the no
ate

Our data sh
creasing, cur
is a major ob
t connectivity
infrastructure

awler during N
cted compon
in May 2001.
in the larges

user pressure
over the last s
tly. Our rough
ines grew tw
cable modem

se available n
ntually paid of
the largest c
ond biggest c

uency . P
 P
 Q

O
r

3 26 2 29 1 0
4

essages/sec)
pe over a 376
ffic (PING me
network conn
traffic. The o

ages. Traffic

ime. We disc
odes are alive

hows that
rrently the
bstacle to
y patterns
e (Section

November
ent of the
 Although

st network

e. First, as
six months.
h estimate
ice as fast

m enabled,
networking
ff.
connected
connected

ing
ush

Query
Othe

4 9

37 8
minu
te

) in Nov.
6 minute
essages,
nectivity)
nly ‘true’
become

cover that
e for more

5

tradeoff between discovery time and invasiveness of our crawler. Increasing the number of parallel crawling tasks
reduces discovery time but increases the burden on the application. Obviously, the Gnutella map our crawler
produces is not an exact ‘snapshot’ of the network. However, we argue that the network graph we obtain is close
to a snapshot in a statistical sense: all properties of the network: size, diameter, average connectivity, and
connectivity distribution are preserved.

4.1 Estimate of Gnutella Generated Traffic
We used a modified version of the crawler to eavesdrop the traffic generated by the network. In Figure 2 we
classify, according to message type, the traffic that goes across one randomly chosen link in November 2000.
After adjusting for message size, we find that, on average, only 36% of the total traffic (in bytes) is user-
generated traffic (QUERY messages). The rest is overhead traffic: 55% used to maintain group membership
(PING and PONG messages) while 9% contains either non-standard messages (1%) or PUSH messages
broadcast by servents that are not compliant with the latest version of the protocol. Apparently, by June 2001,
these engineering problems were solved with the arrival of newer Gnutella implementations: generated traffic
contains 92% QUERY messages, 8% PING messages and insignificant levels of other message types.
Given the small diameter of the network (any two nodes are generally less than 7 hops away, see Figure 3), the
message time-to-live (TTL=7) preponderantly used, and the flooding-based routing algorithm employed, most
links support similar traffic. We verified this theoretical conclusion by measuring the traffic at multiple, randomly
chosen, nodes. As a result, the total Gnutella generated traffic is proportional to the number of connections in the
network. Based on our measurements we estimate the total traffic (excluding file transfers) for a large Gnutella
network as 1Gbps (170,000 connections for a 50,000 nodes large Gnutella network times 6Kbps per connection)
or about 330TB/month. To put this traffic volume into perspective we note that it amounts to about 1.7% of total
traffic in US Internet backbones in December 2000 (as reported in [16]). We infer that the volume of generated
traffic is an important obstacle for further growth and that efficient use of underlying network infrastructure is
crucial for better scaling and wider deployment.

P
er

ce
nt

of
no

de
pa

irs
(%

) 50%
Search

characteristichs

N
um

be
ro

fli
nk

s(
©

00
0)

 200 Graph connectivity .

40%
150

30%
 100
20%

10%
 50

 0% 0
 1 2 3 4 5 6 7 8 9 10 11 12 0 10000 20000 30000 40000 50000

Node-to-node shortest path

(hops)
Number of

nodes

Figure 3: Distribution of node-to-node shortest paths. Figure 4: Average node connectivity. Each point
Each line represents one network measurement. Note represents one Gnutella network. Note that, as the
network
that, although the largest network diameter (the longest grows, the average number of connections
per node
node-to-node path) is 12, more than 95% of node pairs remains constant (average node connectivity is 3.4
are at most 7 hops away connections per node).

One interesting feature of the network is that, over a seven-month period, with the network scaling up almost two
orders of magnitude, the average number of connections per node remained constant

 6

(Figure 4). Assuming this invariant holds, it is possible to estimate the generated traffic for larger networks and
find scalability limits based on available bandwidth.

4.2. Connectivity and Reliability in Gnutella Network. Power-law Distributions.
When analyzing global connectivity and reliability patterns in the Gnutella network, it is important to keep in mind
the self-organized network behavior: users decide only the maximum number of connections a node should
support, while nodes decide whom to connect to or when to drop/add a connection based only on local
information.
Recent research [1,7,8,13] shows that many natural networks such as molecules in a cell, species in an
ecosystem, and people in a social group organize themselves as so called power-law networks. In these
networks most nodes have few links and a tiny number of hubs have a large number of links. More specifically, in
a power-law network the fraction of nodes with L links is proportional to L k , where k is a network dependent
constant.
This structure helps explaining why networks ranging from metabolisms to ecosystems to the Internet are
generally highly stable and resilient, yet prone to occasional catastrophic collapse[14]. Since most nodes
(molecules, Internet routers, Gnutella servents) are sparsely connected, little depends on them: a large fraction
can be taken away and the network stays connected. But, if just a few highly connected nodes are eliminated,
the whole system could crash. One implication is that these networks are extremely robust when facing random
node failures, but vulnerable to well-planned attacks.
Given the diversity of networks that exhibit power-law structure and their properties we were interested to
determine whether Gnutella falls into the same category. Figure 5 presents the connectivity distribution in Nov.
2000. Although data are noisy (due to the small size of the networks), we can easily recognize the signature of a
power-law distribution: the connectivity distribution appears as a line on a log-log plot. [6,4] confirm that early
Gnutella networks were power-law. Later measurements (Figure 6) however, show that more recent networks
move away from this organization: there are too few nodes with low connectivity to form a pure power-law
network. In these networks the power-law distribution is preserved for nodes with more than 10 links while nodes
with fewer link follow an almost constant distribution.

1000

0 Node connectivity distribution.

g

1000

100

10

 1

 1 10
10
0

 Number of links (log scale)

Figure 5: Connectivity distribution during November
2000. Each series of points represents one Gnutella
network topology we discovered at different times
during that month. Note the log scale on both axes.
Gnutella nodes organized themselves into a power-
law network.

10000 Node connectivity distribution .

1000

100

10

a l e)
1

1 10 100
 Number of links (log scale)

Figure 6: Connectivity distributions during March
2001.
Each series of points represents one Gnutella
network
topology discovered during March 2001. Note the
log
scale on both axes. Networks crawled during
May/June
2001 show a similar pattern.

 7

An interesting issue is the impact of this new, multi-modal distribution on network reliability. We believe that the
more uniform connectivity distribution preserves the network capability to deal with random node failures while
reducing the network dependence on highly connected, easy to single out (and attack) nodes.

4.3. Internet Infrastructure and Gnutella Network
Peer-to-peer computing brings an important change to the way we use the Internet: it enables computers sitting
at the edges of the network to act as both clients and servers. As a result, P2P applications radically change the
amount of bandwidth the average Internet user consumes. Most Internet Service Providers (ISP) use flat rates to
bill their clients. If P2P applications become ubiquitous, they could break the existing business models of many
ISPs and force them to change their pricing scheme [9].

Given the considerable traffic volume a P2P application generates (see our Gnutella estimates in previous
section) it is crucial that it employs well available networking resources. The scalability of a P2P application is
ultimately determined by how efficiently it uses the underlying network. Gnutella’s store-and-forward architecture
makes the virtual network topology extremely important. The larger the mismatch between the network
infrastructure and the P2P application’s virtual topology, the bigger the “ stress” on the infrastructure. In the
following we investigate whether the self-organizing Gnutella network shapes its topology to map well on the
physical infrastructure.
Let us first present an example to highlight the importance of a “ fitting” virtual topology. In Figure 7, eight hosts
participate in a Gnutella like network. We use black, solid lines to present the underlying network infrastructure
and blue, dotted lines for application virtual topology. In the left picture, the virtual topology closely matches the
infrastructure. In the right picture, the virtual topology, although functionally similar, does not match the
infrastructure. In this case the traffic the link D-E has to support is six times higher.

A F A F E E

B D B

G G D

C H C H

Figure 7: Gnutella’s virtual network topology (blue, dotted arrows) mapping on the underlying
network infrastructure (black). Left picture: perfect mapping. Right picture: inefficient mapping;
link D-E needs to support six times higher traffic.

Unfortunately, it is prohibitively expensive to map Gnutella on the Internet detailed topology (firstly, due to the
inherent difficulty of extracting Internet topology and secondly, due to the computational scale of the problem).
Instead, we proceed with two high level experiments that highlight the mismatch between the topologies of the
two networks.
The Internet is a collection of Autonomous Systems (AS) which are connected by routers. ASs, in turn, are
collections of local area networks under a single technical administration. From an ISP point of view traffic
crossing AS borders is more expensive than local traffic. We found that only 2-5% of Gnutella connections link
nodes located within the same AS, although more than 40% of these nodes

 8

are located in the top ten ASs. This indicates that, although unforced by node distribution, most Gnutella
generated traffic crosses AS border being thus more expensive to handle.
In the second experiment we assume that the hierarchical organization of domain names mirrors that of the
Internet infrastructure. For example, it is likely that communication costs between two hosts in the “
uchicago.edu” domain are significantly smaller than between “ uchicago.edu” and “ sdsc.edu.” The underlying
assumption here is that domain names express some sort of organizational hierarchy and that organizations tend
to build networks that exploit locality within that hierarchy.
In order to study how well Gnutella virtual topology maps on to the Internet partitioning as defined by domain
names, we divide the Gnutella virtual topology graph into clusters, i.e., subgraphs with high interior connectivity.
Given the flooding-like routing algorithm used by Gnutella, it is within these clusters that most load is generated.
We are therefore interested to see how well these clusters map on the partitioning defined by the domain naming
scheme.
We use a simple clustering algorithm based on the connectivity distribution described earlier: we define as
clusters subgraphs formed by one hub with its adjacent nodes. If two clusters have more than 25% nodes in
common, we merge them. After the clustering is done, we (1) assign nodes that are included in more than one
cluster only to the largest cluster and (2) form a last cluster with nodes that are not included in any other cluster.
We define the entropy [24] of a set C, containing |C| hosts, each labeled with one of the n distinct domain names,
as:

n
E(C) � pi log(pi) (1pi ) log(1pi) ,

i �1
where pi is the probability of randomly picking a host with domain name i.

We then define the entropy of a clustering of a graph of size |C|, clustered in k clusters C1 , C2 ,..., Ck of sizes C1 ,
C2 ,..., Ck , with C � C1  C2  ...  Ck , as:

k
Ci

E(C1 , C2 ,...Ck) �

* E(Ci)

C1



C2

 ...  Ck

i �1
We base our reasoning on the property that E(C) � E(C1 , C2 ,..., Ck) no matter how the clusters
C1 , C2 ,..., Ck are chosen. If the clustering matches the domain partitioning, then we should find that E(C) ��
E(C1 , C2 ,..., Ck) . Conversely, if the clustering C1 , C2 ,..., Ck has the same level of
randomness as in the initial set C, then the entropy should remain largely unchanged. Essentially, the entropy
function is used here to measure how well the two partitions applied on set nodes match: the first partition uses
the information contained in domain names, while the second uses the clustering heuristic. Note that a large
class of data mining and machine learning algorithms based on information gains (ID3, C4.5, etc. [25]) use a
similar argument to build their decision trees.
We performed this analysis on 10 topology graphs collected during February/March 2001. We detected no
significant decrease in entropy after performing the clustering (all decreases were within less than 8% from the
initial entropy value). Consequently, we conclude that Gnutella nodes cluster in a way that is completely
independent from the Internet structure. Assuming that the Internet domain name structure roughly matches the
underlying topology (the cost of sending data within a domain is smaller than that of sending data across
domains), we conclude that the self-organizing Gnutella network does not efficiently use the underlying physical
infrastructure.

 9

5. Summary and Potential Improvements
Sociological circumstances that have fostered the success of Gnutella network might change and the network
might fade. P2P, however, “ is one of those rare ideas that is simply too good to go away” [18]. Despite recent
excitement generated by this paradigm and the surprisingly rapid deployment of some P2P applications, there
are few quantitative evaluations of P2P systems behavior. The open architecture, achieved scale, and self-
organizing structure of the Gnutella network make it an interesting P2P architecture to study. Our measurement
and analysis techniques can be used for most P2P systems to enhance general understanding of design
tradeoffs.
Our analysis shows that Gnutella node connectivity follows a multi-modal distribution: combining a power law and
a quasi-constant distribution. This property keeps the network as reliable as a pure power-law network when
assuming random node failures, and makes it harder to attack by a malicious adversary. Gnutella takes few
precautions to ward off potential attacks. For example, the network topology information that we obtain here is
easy to obtain and would permit highly efficient denial-of-service attacks. Some form of security mechanisms that
would prevent an intruder to gather topology information appears essential for the long-term survival of the
network.
We have estimated that, as of June 2001, the network generates about 330TB/month only to remain connected
and broadcast user queries. This traffic volume represents a significant fraction of the total Internet traffic and
makes the future growth of Gnutella network particularly dependent on efficient network usage. We have also
documented the topology mismatch between the self-organized, application level Gnutella network and the
underlying physical networking infrastructure. We believe this has major implications for the scalability of the
Internet (or, equivalently, for the business models of ISPs). This problem must be solved if Gnutella or similarly
built systems are to reach larger deployment.
We see two directions for improvement. First, we observe that the application-level topology determines the
volume of generated traffic, the search success rate, and the application reliability. We imagine an agent that
constantly monitors the network and intervenes by asking servents to drop or add links as necessary to keep the
network topology efficient. Additionally, agents (or nodes) could learn about the underlying physical network and
build the virtual application topology accordingly. Note that implementing this idea requires some minimal protocol
modifications.
A second, orthogonal, direction is to replace flooding with a smarter (less expensive in terms of communication
costs) routing and group communication mechanism. Recent research projects: Chord [19], CAN [21], SDS [23]
or OceanStore [22] focus on building Intenet scale overlay networks and offer a vast array of choices future
Gnutella implementations could build on.

6. Acknowledgements
I am grateful to Ian Foster, Adriana Iamnitchi, Larry Lidz, Conor McGrath, Dustin Mitchell, and Alain
Roy for their insightful comments and generous support. This work started as a joint class project with
Yugo Nakai and Xuehai Zhang. Rongguan Jin, Knox McMurry, and Yan Wang participated in refining
this work.
This research was supported by the National Science Foundation under contract ITR-0086044.

7. References
[1] M. Faloutsos, P. Faloutsos, C. Faloutsos, On Power-Law Relationships of the Internet Topology, SIGCOMM

1999.
[2] E. Adar, B. Huberman, Free riding on Gnutella, First Monday Vol 5-10 – Oct. 2, 2000.

 10

[3] The Gnutella protocol specification v4.0 -http://dss.clip2.com/GnutellaProtocol04.pdf [4] DSS Group,
Gnutella: To the Bandwidth Barrier and Beyond, http://dss.clip2.com, Nov. 6, 2000. [5] DSS Group,
Bandwidth Barriers to Gnutella Network Scalability, http://dss.clip2.com, Sept. 8, 2000. [6] Lada A.
Adamic, Rajan M. Lukose, Amit R. Puniyani, B. Huberman, Search in Powe-Law Networks.
[7] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins and J. Wiener, Graph

structure in the web, 8th International WWW Conference, May 15-19 Amsterdam.
[8] A. Barabasi and R. Albert. Emergence of scaling in random networks, Science, 286(509), 1999.
[9] Todd Spangle, The Hidden Cost Of P2P, Interactive Week, February 26, 2001.
[10] M.Katz, C. Shapiro, Systems Competition and Network Effects, Journal of Economic Perspectives, vol. 8,

no. 2, pp. 93-115, 1994.
[11] T. Cover, J. Thomas, Elements of Information Theory, Wiley, 1991.
[12] B. St. Arnaud, Scaling Issues on Internet Networks, Technical Report, CANARIE Inc.
[13] A, Barabási , R. Albert, H. Jeong, G. Bianconi, Power-law distribution of the World Wide Web, Science

287, (2000).
[14] R. Albert, H. Jeong, A. Barabási, Attak and tolerance in complex networks, Nature 406 378 (2000).
[15] http://dss.clip2.com
[16] K. Coffman, A. Odlyzko, Internet growth: Is there a "Moore's Law" for data traffic?, Handbook of Massive

Data Sets, J. Abello & all editors., Kluwer, 2001.
[17] J. Han, M. Kamber, Data Mining : Concepts and Techniques, Morgan Kaufmann, August 2000.
[18] The Economist, Invention is the Easy Bit, The Economist Technology Quarterly 6/23/01.
[19] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan, Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications, SIGCOMM 2001.
[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker A Scalable Content-Addressable Network.

Submitted for publication, 2000
[21] Ben Zhao, John Kubiatowicz, Anthony Joseph. Tapestry: An infrastructure for wide-area fault tolerant

location and routing
[22] Zachary Ives, Alon Levy, Jayant Madhavan, Rachel Pottinger, Stefan Saroiu, Igor Tatarinov, Shiori Betzler,

Qiong Chen, Ewa Jaslikowska, Jing Su, W.T. Theodora Yeung. Self-Organizing Data Sharing Communities
with SAGRES, SIGMOD 2000, Dallas, TX.

[23] Todd D. Hodes, Steven E. Czerwinski, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, An Architecture
for Secure Wide-Area Service Discovery, ACM Baltzer Wireless Networks: selected papers from MobiCom
1999.

[24] T. Cover, J. Thomas, Elements of Information Theory, Wiley, 1991.
[25] J. Han, M. Kamber, Data Mining : Concepts and Techniques, Morgan Kaufmann, August 2000.

 11

