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Paths and cycles

• A path is a sequence of nodes 
v1, v2, …, vN such that (vi,vi+1)E for 0<i<N

– The length of the path is N-1.
– Simple path: all vi are distinct, 0<i<N

• A cycle is a path such that v1=vN
– An acyclic graph has no cycles
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Cycles

PIT

BOS

JFK

DTW

LAX

SFO
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More useful definitions

• In a directed graph:

• The indegree of a node v is the number of 
distinct edges (w,v)E.

• The outdegree of a node v is the number of 
distinct edges (v,w)E.

• A node with indegree 0 is a root.
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Trees are graphs

• A dag is a directed acyclic graph.

• A tree is a connected acyclic undirected 
graph.

• A forest is an acyclic undirected graph (not 
necessarily connected), i.e., each connected 
component is a tree.



15-211: Fundamental Data 
Structures and Algorithms

Rose Hoberman
April 8, 2003

6

Example DAG

Watch
Socks

Shoes

Undershorts

Pants

Belt Tie

Shirt

Jacket

a DAG implies an
ordering on events



15-211: Fundamental Data 
Structures and Algorithms

Rose Hoberman
April 8, 2003

7

Example DAG

Watch
Socks

Shoes

Undershorts

Pants

Belt Tie

Shirt

Jacket

In a complex DAG, it 
can be hard to find a 
schedule that obeys 
all the constraints.



Topological Sort
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Topological Sort

• For a directed acyclic graph G = (V,E)
• A topological sort is an ordering of all of G’s 

vertices v1, v2, …, vn such that...

Formally: for every edge (vi,vk) in E, i<k.
Visually: all arrows are pointing to the right
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Topological sort

• There are often many possible topological 
sorts of a given DAG

• Topological orders for this DAG :

• 1,2,5,4,3,6,7
• 2,1,5,4,7,3,6
• 2,5,1,4,7,3,6
• Etc.

• Each topological order is a feasible schedule.

1
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Topological Sorts for Cyclic 
Graphs?

Impossible!
1 2

3

• If v and w are two vertices on a cycle, there       
exist paths from v to w and from w to v. 
• Any ordering will contradict one of these paths
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Topological sort algorithm

• Algorithm
– Assume indegree is stored with each node.
– Repeat until no nodes remain:

• Choose a root and output it.
• Remove the root and all its edges.

• Performance
– O(V2 + E), if linear search is used to find a root.



Graph Traversals
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Graph Traversals

•Both take time: O(V+E)
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Use of a stack

• It is very common to use a stack to keep track 
of:
– nodes to be visited next, or
– nodes that we have already visited.

• Typically, use of a stack leads to a depth-first 
visit order.

• Depth-first visit order is “aggressive” in the 
sense that it examines complete paths.
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Topological Sort as DFS

• do a DFS of graph G
• as each vertex v is “finished” (all of it’s 

children processed), insert it onto the front of 
a linked list

• return the linked list of vertices

• why is this correct?
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Use of a queue

• It is very common to use a queue to keep 
track of:
– nodes to be visited next, or
– nodes that we have already visited.

• Typically, use of a queue leads to a breadth-
first visit order.

• Breadth-first visit order is “cautious” in the 
sense that it examines every path of length i 
before going on to paths of length i+1.
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Graph Searching ???

• Graph as state space (node = state, edge = action) 
• For example, game trees, mazes, ...
• BFS and DFS each search the state space for a best 

move.  If the search is exhaustive they will find the 
same solution, but if there is a time limit and the 
search space is large...

• DFS explores a few possible moves, looking at the 
effects far in the future

• BFS explores many solutions but only sees effects in 
the near future (often finds shorter solutions)
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Minimum Spanning Trees
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Problem: Laying Telephone Wire

Central office



15-211: Fundamental Data 
Structures and Algorithms

Rose Hoberman
April 8, 2003

21

Wiring: Naïve Approach

Central office

Expensive!
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Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers
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Minimum Spanning Tree (MST)
(see Weiss, Section 24.2.2)

• it is a tree (i.e., it is acyclic)
• it covers all the vertices V

– contains |V| - 1 edges

• the total cost associated with tree edges is the 
minimum among all possible spanning trees

• not necessarily unique

A minimum spanning tree is a subgraph of an 
undirected weighted graph G, such that
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Applications of MST
• Any time you want to visit all vertices in a graph at 

minimum cost (e.g., wire routing on printed circuit 
boards, sewer pipe layout, road planning…)

• Internet content distribution
– $$$, also a hot research topic
– Idea: publisher produces web pages, content distribution 

network replicates web pages to many locations so consumers 
can access at higher speed

– MST may not be good enough!
• content distribution on minimum cost tree may take a long time!

• Provides a heuristic for traveling salesman problems. 
The optimum traveling salesman tour is at most twice 
the length of the minimum spanning tree (why??)
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How Can We Generate a MST? 
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Prim’s Algorithm

Initialization
a. Pick a vertex r to be the root
b. Set D(r) = 0, parent(r) = null
c. For all vertices v  V, v  r, set D(v) = 
d. Insert all vertices into priority queue P, 

using distances as the keys
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Prim’s Algorithm
While P is not empty:

1. Select the next vertex u to add to the tree
u = P.deleteMin()

2. Update the weight of each vertex w adjacent to 
u which is not in the tree (i.e., w  P)

If weight(u,w) < D(w),
a. parent(w) = u
b. D(w) = weight(u,w)
c. Update the priority queue to reflect 

new distance for w
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Prim’s algorithm
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The MST initially consists of the vertex e, and we update
the distances and parent for its adjacent vertices

Vertex Parent
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d -
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Prim’s algorithm
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Prim’s algorithm
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Prim’s algorithm
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Prim’s algorithm

Vertex Parent
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b e
c d
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a d
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The final minimum spanning tree
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Running time of Prim’s algorithm
(without heaps)

Initialization of priority queue (array): O(|V|)

Update loop:  |V| calls
• Choosing vertex with minimum cost edge: O(|V|)
• Updating distance values of unconnected 

vertices: each edge is considered only once
during entire execution, for a total of O(|E|) 
updates 

Overall cost without heaps:

When heaps are used, apply same analysis as for 
Dijkstra’s algorithm (p.469) (good exercise)

O(|E| + |V| 2)
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Prim’s Algorithm Invariant

• At each step, we add the edge (u,v) s.t. the 
weight of (u,v) is minimum among all edges 
where u is in the tree and v is not in the tree

• Each step maintains a minimum spanning tree of 
the vertices that have been included thus far

• When all vertices have been included, we have a 
MST for the graph!
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Correctness of Prim’s
• This algorithm adds n-1 edges without creating a 

cycle, so clearly it creates a spanning tree of any 
connected graph (you should be able to prove this). 

But is this a minimum spanning tree?
Suppose it wasn't. 

• There must be point at which it fails, and in particular 
there must a single edge whose insertion first 
prevented the spanning tree from being a minimum 
spanning tree. 
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Correctness of Prim’s

• Let V' be the vertices incident with edges in S
• Let T be a MST of G containing all edges in S, but not (x,y). 

• Let G be a connected, 
undirected graph

• Let S be the set of 
edges chosen by Prim’s 
algorithm before
choosing an errorful 
edge (x,y)

x
y
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Correctness of Prim’s

x
y

v
w

• There is exactly one edge on this cycle with exactly 
one vertex in V’, call this edge (v,w) 

• Edge (x,y) is not in T, so 
there must be a path in 
T from x to y since T is 
connected. 

• Inserting edge (x,y) into 
T will create a cycle 
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Correctness of Prim’s

• Since Prim’s chose (x,y) over (v,w), w(v,w) >= w(x,y). 
• We could form a new spanning tree T’ by swapping 

(x,y) for (v,w) in T (prove this is a spanning tree). 
• w(T’) is clearly no greater than w(T)
• But that means T’ is a MST
• And yet it contains all the edges in S, and also (x,y)

...Contradiction
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Another Approach

a
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• Create a forest of trees from the vertices
• Repeatedly merge trees by adding “safe edges” 

until only one tree remains
• A “safe edge” is an edge of minimum weight which 

does not create a cycle

forest: {a}, {b}, {c}, {d}, {e}
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Kruskal’s algorithm

Initialization
a. Create a set for each vertex v  V
b. Initialize the set of “safe edges” A

comprising the MST to the empty set
c. Sort edges by increasing weight

a

c
e

d
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F = {a}, {b}, {c}, {d}, {e}
A = 
E = {(a,d), (c,d), (d,e), (a,c), 

(b,e), (c,e), (b,d), (a,b)}
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Kruskal’s algorithm
For each edge (u,v)  E in increasing order 
while more than one set remains:

If u and v, belong to different sets U and V
a. add edge (u,v) to the safe edge set

A = A  {(u,v)}
b. merge the sets U and V

F = F - U - V + (U  V)

Return A

• Running time bounded by sorting (or findMin)
• O(|E|log|E|), or equivalently, O(|E|log|V|) (why???)
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Kruskal’s algorithm

E = {(a,d), (c,d), (d,e), (a,c), 
(b,e), (c,e), (b,d), (a,b)}

Forest
{a}, {b}, {c}, {d}, {e}
{a,d}, {b}, {c}, {e}
{a,d,c}, {b}, {e}
{a,d,c,e}, {b}
{a,d,c,e,b}

A

{(a,d)}
{(a,d), (c,d)}
{(a,d), (c,d), (d,e)}
{(a,d), (c,d), (d,e), (b,e)}
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• After each iteration, every tree in the forest is a MST 
of the vertices it connects

• Algorithm terminates when all vertices are connected 
into one tree

Kruskal’s Algorithm Invariant
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Correctness of Kruskal’s
• This algorithm adds n-1 edges without creating a 

cycle, so clearly it creates a spanning tree of any 
connected graph (you should be able to prove this). 

But is this a minimum spanning tree?
Suppose it wasn't. 

• There must be point at which it fails, and in particular 
there must a single edge whose insertion first 
prevented the spanning tree from being a minimum 
spanning tree. 
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Correctness of Kruskal’s

• Let e be this first errorful edge.
• Let K be the Kruskal spanning tree
• Let S be the set of edges chosen by Kruskal’s algorithm 

before choosing e
• Let T be a MST containing all edges in S, but not e. 

K T
S

e
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Correctness of Kruskal’s

Proof (by contradiction):
• Assume there exists some 

edge e’ in T - S, w(e’) < 
w(e)

• Kruskal’s must have 
considered e’ before e

K T
S

e

Lemma: w(e’) >= w(e) for all edges e’ in T - S

• However, since e’ is not in K (why??), it must have 
been discarded because it caused a cycle with some of 
the other edges in S.

• But e’ + S is a subgraph of T, which means it cannot 
form a cycle                                 ...Contradiction
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Correctness of Kruskal’s

• Inserting edge e into T will create a cycle 
• There must be an edge on this cycle which is not in K 

(why??).  Call this edge e’
• e’ must be in T - S, so (by our lemma) w(e’) >= w(e)
• We could form a new spanning tree T’ by swapping e 

for e’ in T (prove this is a spanning tree). 
• w(T’) is clearly no greater than w(T)
• But that means T’ is a MST
• And yet it contains all the edges in S, and also e 

...Contradiction
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Greedy Approach

• Like Dijkstra’s algorithm, both Prim’s and Kruskal’s 
algorithms are greedy algorithms

• The greedy approach works for the MST problem; 
however, it does not work for many other 
problems!



That’s All!


