

Paths and cycles

- A path is a sequence of nodes $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{N}}$ such that $\left(\mathrm{v}_{i}, \mathrm{v}_{i+1}\right) \in \mathrm{E}$ for $0<i<\mathrm{N}$
- The length of the path is $\mathrm{N}-1$.
- Simple path: all v_{i} are distinct, $0<i<N$
- A cycle is a path such that $\mathrm{v}_{1}=\mathrm{v}_{\mathrm{N}}$ - An acyclic graph has no cycles

Cycles

More useful definitions

- In a directed graph:
- The indegree of a node v is the number of distinct edges (w, v) $\in \mathrm{E}$.
- The outdegree of a node v is the number of distinct edges $(\mathrm{v}, \mathrm{w}) \in \mathrm{E}$.
- A node with indegree 0 is a root.

Trees are graphs

- A dag is a directed acyclic graph.
- A tree is a connected acyclic undirected graph.
- A forest is an acyclic undirected graph (not necessarily connected), i.e., each connected component is a tree.

Example DAG

Example DAG

Topological Sort

Topological Sort

- For a directed acyclic graph $G=(\mathrm{V}, \mathrm{E})$
- A topological sort is an ordering of all of G's vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ such that...

Formally: for every edge $\left(v_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}\right)$ in $E, \mathrm{i}<\mathrm{k}$.
Visually: all arrows are pointing to the right

Topological sort

- There are often many possible topological sorts of a given DAG
- Topological orders for this DAG:
- 1,2,5,4,3,6,7
- 2,1,5,4,7,3,6
- 2,5,1,4,7,3,6
- Etc.

- Each topological order is a feasible schedule.

Topological Sorts for Cyclic Graphs?

Impossible!

- If v and w are two vertices on a cycle, there exist paths from v to w and from w to v.
- Any ordering will contradict one of these paths

Topological sort algorithm

- Algorithm
- Assume indegree is stored with each node.
- Repeat until no nodes remain:
- Choose a root and output it.
- Remove the root and all its edges.
- Performance
$-\mathrm{O}\left(\mathrm{V}^{2}+\mathrm{E}\right)$, if linear search is used to find a root.

Graph Traversals

Graph Traversals

Use of a stack

- It is very common to use a stack to keep track of:
- nodes to be visited next, or
- nodes that we have already visited.
- Typically, use of a stack leads to a depth-first visit order.
- Depth-first visit order is "aggressive" in the sense that it examines complete paths.

Topological Sort as DFS

- do a DFS of graph G
- as each vertex v is "finished" (all of it's children processed), insert it onto the front of a linked list
- return the linked list of vertices
- why is this correct?

Use of a queue

- It is very common to use a queue to keep track of:
- nodes to be visited next, or
- nodes that we have already visited.
- Typically, use of a queue leads to a breadthfirst visit order.
- Breadth-first visit order is "cautious" in the sense that it examines every path of length i before going on to paths of length $\mathrm{i}+1$.

Graph Searching ???

- Graph as state space (node = state, edge = action)
- For example, game trees, mazes, ...
- BFS and DFS each search the state space for a best move. If the search is exhaustive they will find the same solution, but if there is a time limit and the search space is large...
- DFS explores a few possible moves, looking at the effects far in the future
- BFS explores many solutions but only sees effects in the near future (often finds shorter solutions)

Minimum Spanning Trees

Problem: Laying Telephone Wire

Wiring: Naïve Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting the customers

Minimum Spanning Tree (MST)

(see Weiss, Section 24.2.2)

A minimum spanning tree is a subgraph of an undirected weighted graph \boldsymbol{G}, such that

- it is a tree (i.e., it is acyclic)
- it covers all the vertices \boldsymbol{V}
- contains $|V|-1$ edges
- the total cost associated with tree edges is the minimum among all possible spanning trees
- not necessarily unique

Applications of MST

- Any time you want to visit all vertices in a graph at minimum cost (e.g., wire routing on printed circuit boards, sewer pipe layout, road planning...)
- Internet content distribution
- \$\$\$, also a hot research topic
- Idea: publisher produces web pages, content distribution network replicates web pages to many locations so consumers can access at higher speed
- MST may not be good enough!
- content distribution on minimum cost tree may take a long time!
- Provides a heuristic for traveling salesman problems. The optimum traveling salesman tour is at most twice the length of the minimum spanning tree (why??)

How Can We Generate a MST?

Prim's Algorithm

Initialization

a. Pick a vertex r to be the root
b. Set $\boldsymbol{D}(\boldsymbol{r})=0$, parent $(\boldsymbol{r})=$ null
c. For all vertices $v \in V, v \neq r$, set $D(v)=\infty$
d. Insert all vertices into priority queue \boldsymbol{P}, using distances as the keys

Vertex Parent

e	a	b	c	d
0	∞	∞	∞	∞

Prim's Algorithm

While P is not empty:

1. Select the next vertex \boldsymbol{u} to add to the tree

$$
u=\text { P.deleteMin() }
$$

2. Update the weight of each vertex \boldsymbol{w} adjacent to \boldsymbol{u} which is not in the tree (i.e., $\boldsymbol{w} \in \boldsymbol{P}$)

If $\operatorname{weight}(u, w)<\boldsymbol{D}(w)$,
a. $\operatorname{parent}(w)=u$
b. $\boldsymbol{D}(\boldsymbol{w})=$ weight $(\boldsymbol{u}, \boldsymbol{w})$
c. Update the priority queue to reflect new distance for w

Prim's algorithm

The MST initially consists of the vertex e, and we update the distances and parent for its adjacent vertices

Prim's algorithm

Prim's algorithm

Prim's algorithm

Prim's algorithm

Running time of Prim's algorithm (without heaps)

Initialization of priority queue (array): $\mathrm{O}(|\boldsymbol{V}|)$
Update loop: $|V|$ calls

- Choosing vertex with minimum cost edge: $\mathrm{O}(|V|)$
- Updating distance values of unconnected vertices: each edge is considered only once during entire execution, for a total of $\mathrm{O}(|\boldsymbol{E}|)$ updates
Overall cost without heaps: $\mathrm{O}\left(|\boldsymbol{E}|+|V|^{2}\right)$
When heaps are used, apply same analysis as for Dijkstra's algorithm (p.469) (good exercise)

Prim's Algorithm Invariant

- At each step, we add the edge (u, v) s.t. the weight of (u, v) is minimum among all edges where u is in the tree and v is not in the tree
- Each step maintains a minimum spanning tree of the vertices that have been included thus far
- When all vertices have been included, we have a MST for the graph!

Correctness of Prim's

- This algorithm adds $n-1$ edges without creating a cycle, so clearly it creates a spanning tree of any connected graph (you should be able to prove this).

But is this a minimum spanning tree?
 Suppose it wasn't.

- There must be point at which it fails, and in particular there must a single edge whose insertion first prevented the spanning tree from being a minimum spanning tree.

Correctness of Prim's

- Let G be a connected, undirected graph
- Let S be the set of edges chosen by Prim's algorithm before choosing an errorful edge (x, y)

- Let V^{\prime} be the vertices incident with edges in \mathbf{S}
- Let \mathbf{T} be a MST of G containing all edges in S , but not (x, y).

Correctness of Prim's

- Edge (x, y) is not in \mathbf{T}, so there must be a path in \mathbf{T} from x to y since \mathbf{T} is connected.
- Inserting edge (x, y) into

- There is exactly one edge on this cycle with exactly one vertex in V^{\prime}, call this edge ($\boldsymbol{v}, \boldsymbol{w}$)

Correctness of Prim's

- Since Prim's chose ($\boldsymbol{x}, \boldsymbol{y}$) over $(\mathbf{v}, \mathbf{w}), \mathrm{w}(\mathbf{v}, \mathbf{w})>=w(\mathbf{x}, \mathbf{y})$.
- We could form a new spanning tree \mathbf{T}^{\prime} by swapping $(\boldsymbol{x}, \boldsymbol{y})$ for $(\boldsymbol{v}, \boldsymbol{w})$ in \mathbf{T} (prove this is a spanning tree).
- $w\left(\mathbf{T}^{\prime}\right)$ is clearly no greater than $w(\mathbf{T})$
- But that means T' is a MST
- And yet it contains all the edges in S, and also (x, y)
...Contradiction

Another Approach

- Create a forest of trees from the vertices
- Repeatedly merge trees by adding "safe edges" until only one tree remains
- A "safe edge" is an edge of minimum weight which does not create a cycle

forest: $\{a\},\{b\},\{c\},\{d\},\{e\}$

Kruskal's algorithm

Initialization

a. Create a set for each vertex $\boldsymbol{v} \in \boldsymbol{V}$
b. Initialize the set of "safe edges" \boldsymbol{A} comprising the MST to the empty set
c. Sort edges by increasing weight

$$
\begin{aligned}
& \boldsymbol{F}=\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{e}\} \\
& \boldsymbol{A}=\varnothing \\
& \boldsymbol{E}=\{(\mathrm{a}, \mathrm{~d}),(\mathrm{c}, \mathrm{~d}),(\mathrm{d}, \mathrm{e}),(\mathrm{a}, \mathrm{c}), \\
&(\mathrm{b}, \mathrm{e}),(\mathrm{c}, \mathrm{e}),(\mathrm{b}, \mathrm{~d}),(\mathrm{a}, \mathrm{~b})\}
\end{aligned}
$$

Kruskal's algorithm

For each edge (u,v) $\in E$ in increasing order while more than one set remains:

If \boldsymbol{u} and \boldsymbol{v}, belong to different sets \boldsymbol{U} and \boldsymbol{V}
a. add edge (u,v) to the safe edge set

$$
\boldsymbol{A}=\boldsymbol{A} \cup\{(\boldsymbol{u}, \boldsymbol{v})\}
$$

b. merge the sets \boldsymbol{U} and \boldsymbol{V}

$$
\boldsymbol{F}=\boldsymbol{F}-\boldsymbol{U}-\boldsymbol{V}+(\boldsymbol{U} \cup \boldsymbol{V})
$$

Return A

- Running time bounded by sorting (or findMin)
- O $(|E| \log |E|)$, or equivalently, $\mathrm{O}(|E| \log |V|)$ (why???)

Kruskal's algorithm

$$
\begin{aligned}
E=\{ & (\mathrm{a}, \mathrm{~d}),(\mathrm{c}, \mathrm{~d}),(\mathrm{d}, \mathrm{e}),(\mathrm{a}, \mathrm{c}) \\
& (\mathrm{b}, \mathrm{e}),(\mathrm{c}, \mathrm{e}),(\mathrm{b}, \mathrm{~d}),(\mathrm{a}, \mathrm{~b})\}
\end{aligned}
$$

Kruskal's Algorithm Invariant

- After each iteration, every tree in the forest is a MST of the vertices it connects
- Algorithm terminates when all vertices are connected into one tree

Correctness of Kruskal's

- This algorithm adds $n-1$ edges without creating a cycle, so clearly it creates a spanning tree of any connected graph (you should be able to prove this).

But is this a minimum spanning tree?
 Suppose it wasn't.

- There must be point at which it fails, and in particular there must a single edge whose insertion first prevented the spanning tree from being a minimum spanning tree.

Correctness of Kruskal's

- Let e be this first errorful edge.

- Let \mathbf{K} be the Kruskal spanning tree
- Let \mathbf{S} be the set of edges chosen by Kruskal's algorithm before choosing e
- Let T be a MST containing all edges in S, but not \mathbf{e}.

Correctness of Kruskal's

Lemma: w(e') >=w(e) for all edges \mathbf{e}^{\prime} in \mathbf{T} - S

Proof (by contradiction):

- Assume there exists some edge e' in T-S, w(e') < w(e)
- Kruskal's must have considered e' before e

- However, since \mathbf{e}^{\prime} is not in \mathbf{K} (why??), it must have been discarded because it caused a cycle with some of the other edges in \mathbf{S}.
- But $\mathbf{e}^{\prime}+\mathbf{S}$ is a subgraph of \mathbf{T}, which means it cannot form a cycle
...Contradiction

Correctness of Kruskal's

- Inserting edge e into \mathbf{T} will create a cycle
- There must be an edge on this cycle which is not in \mathbf{K} (why??). Call this edge e'
- \mathbf{e}^{\prime} must be in T-S, so (by our lemma) w(e') >=w(e)
- We could form a new spanning tree T' by swapping e for \mathbf{e}^{\prime} in \mathbf{T} (prove this is a spanning tree).
- $w\left(\mathbf{T}^{\prime}\right)$ is clearly no greater than $w(\mathbf{T})$
- But that means T' is a MST
- And yet it contains all the edges in S, and also e
...Contradiction

Greedy Approach

- Like Dijkstra's algorithm, both Prim's and Kruskal's algorithms are greedy algorithms
- The greedy approach works for the MST problem; however, it does not work for many other problems!

That's All!

