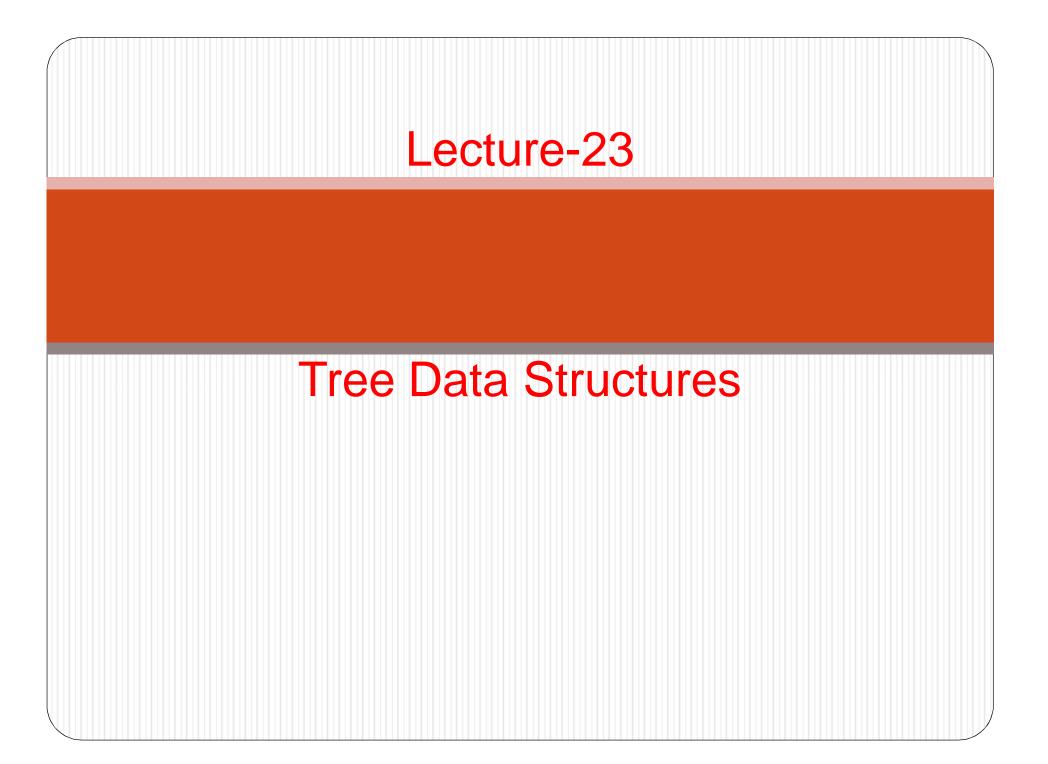
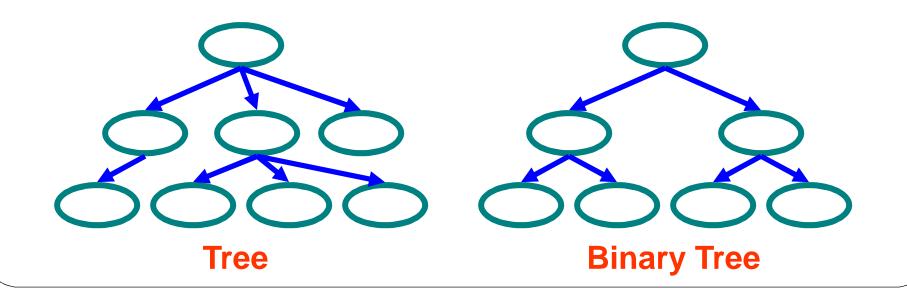
DATA STRUCTURES USING 'C'



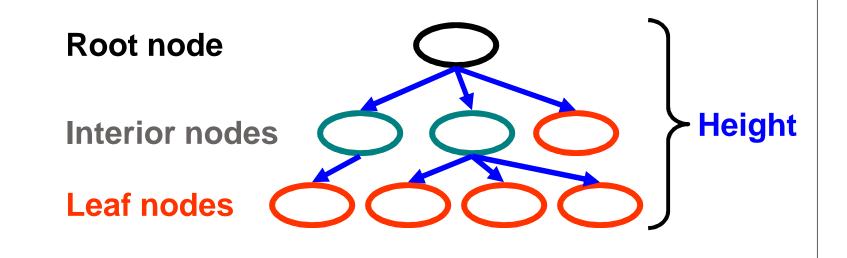
Trees Data Structures

- Tree
 - Nodes
 - Each node can have 0 or more children
 - A node can have at most one parent
- Binary tree
 - Tree with 0–2 children per node



Trees

- Terminology
 - Root ⇒ no parent
 - Leaf \Rightarrow no child
 - Interior ⇒ non-leaf
 - Height ⇒ distance from root to leaf

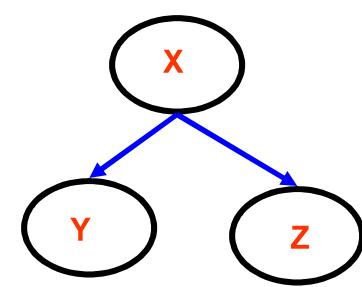


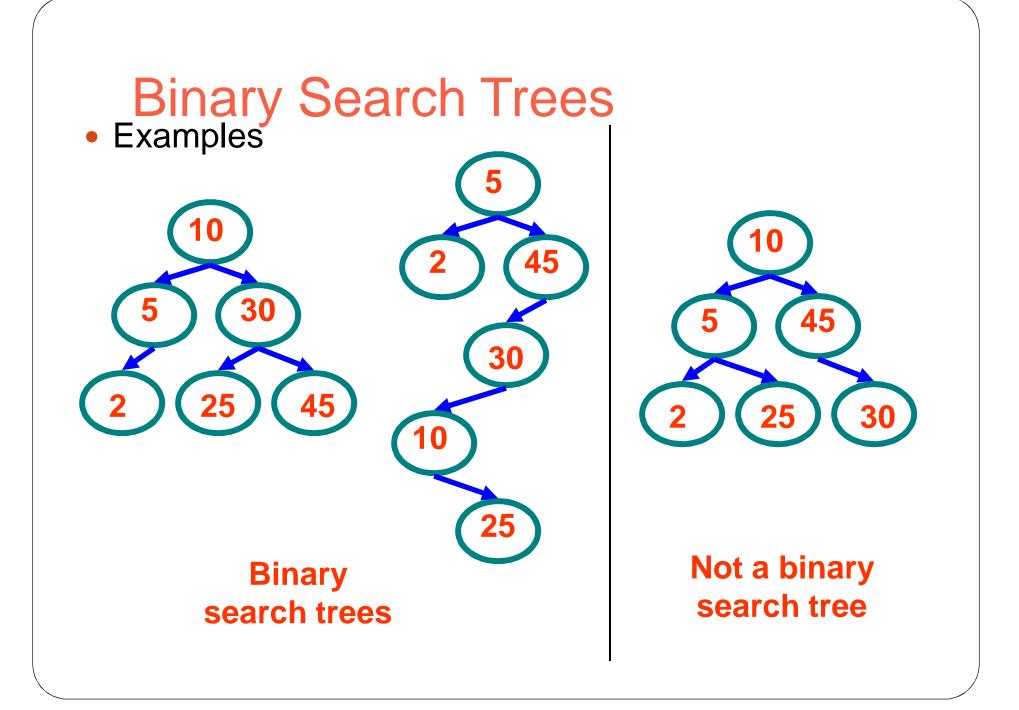
Binary Search Trees

- Key property
 - Value at node
 - Smaller values in left subtree
 - Larger values in right subtree
 - Example

• X > Y

• X < Z

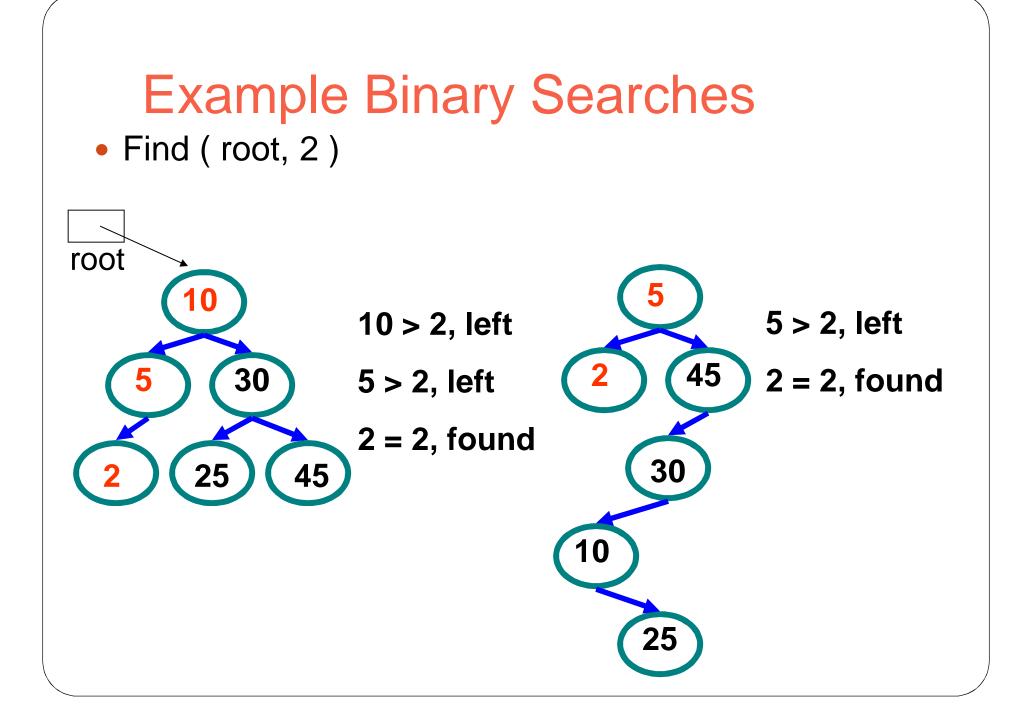




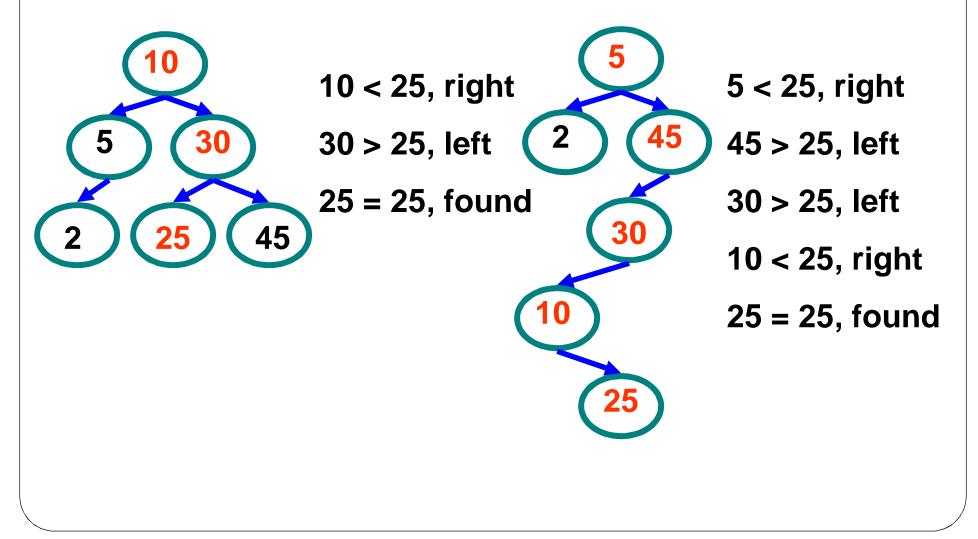
```
Binary Tree Implementation
Class Node {
   int data; // Could be int, a class, etc
   Node *left, *right; // null if empty
   void insert (int data) { ... }
   void delete (int data) { ... }
   Node *find (int data) { ... }
```

```
Iterative Search of Binary Tree
Node *Find(Node *n, int key) {
    while (n != NULL) {
       if (n->data == key) // Found it
         return n;
       if (n->data > key)
                                  // In left subtree
         n = n -> left;
                                  // In right subtree
       else
         n = n - right;
    return null;
Node * n = Find(root, 5);
```

```
Recursive Search of Binary Tree
Node *Find( Node *n, int key) {
   if (n == NULL) // Not found
     return( n );
   else if (n->data == key) // Found it
     return( n );
   else if (n->data > key) // In left subtree
     return Find( n->left, key );
   else
                              // In right subtree
     return Find( n->right, key );
Node * n = Find(root, 5);
```

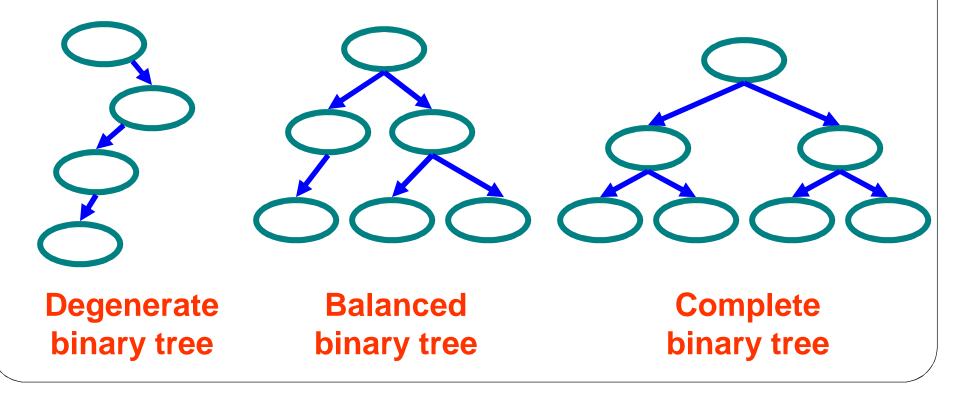


Example Binary Searches Find (root, 25)



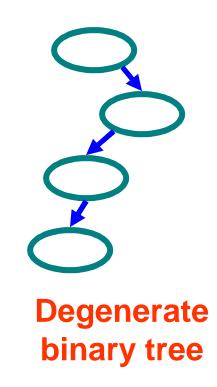
Types of Binary Trees

- Degenerate only one child
- Complete always two children
- Balanced "mostly" two children
 - more formal definitions exist, above are intuitive ideas

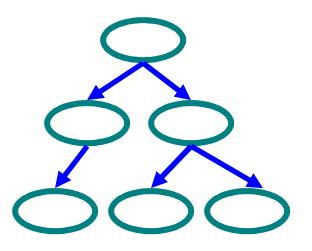


Binary Trees Properties • Degenerate

- - Height = O(n) for n nodes
 - Similar to linked list



- Height = $O(\log(n))$ for n nodes
- Useful for searches



Balanced binary tree

Binary Search Properties

- Time of search
 - Proportional to height of tree
 - Balanced binary tree
 - O(log(n)) time
 - Degenerate tree
 - O(n) time
 - Like searching linked list / unsorted array

Binary Search Tree Construction

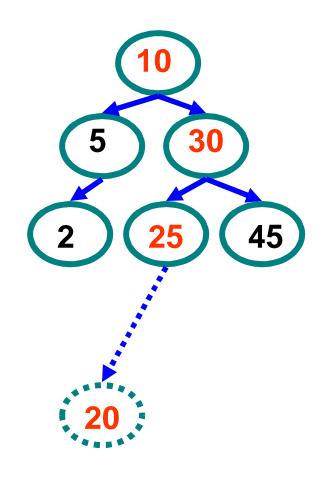
- How to build & maintain binary trees?
 - Insertion
 - Deletion
- Maintain key property (invariant)
 - Smaller values in left subtree
 - Larger values in right subtree

Binary Search Tree – Insertion

- Algorithm
 - 1. Perform search for value X
 - 2. Search will end at node Y (if X not in tree)
 - If X < Y, insert new leaf X as new left subtree for
 Y
 - If X > Y, insert new leaf X as new right subtree for Y
- Observations
 - O(log(n)) operation for balanced tree
 - Insertions may unbalance tree

Example Insertion

• Insert (20)



10 < 20, right

30 > 20, left

25 > 20, left

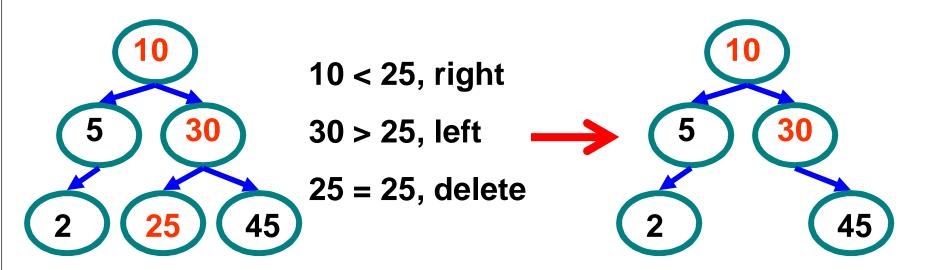
Insert 20 on left

Binary Search Tree – Deletion

- Algorithm
 - 1. Perform search for value X
 - 2. If X is a leaf, delete X
 - 3. Else // must delete internal node
 - a) Replace with largest value Y on left subtree
 OR smallest value Z on right subtree
 b) Delete replacement value (Y or Z) from subtree
 - Observation
 - O(log(n)) operation for balanced tree
 - Deletions may unbalance tree

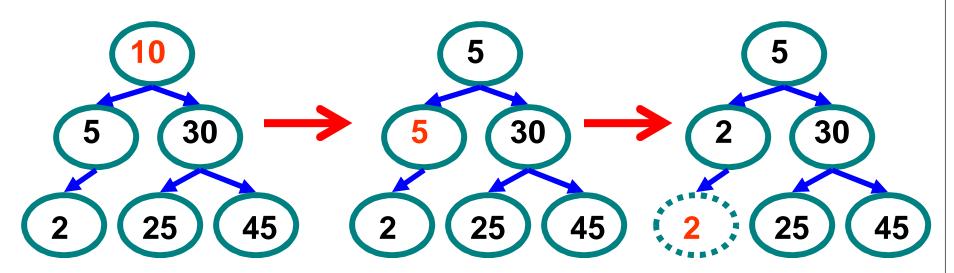
Example Deletion (Leaf)

• Delete (25)



Example Deletion (Internal Node)

• Delete (10)

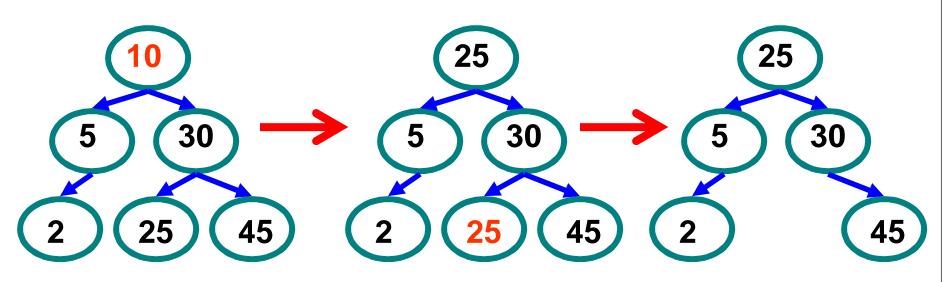


Replacing 10 with largest value in left subtree

Replacing 5 with largest value in left subtree **Deleting leaf**

Example Deletion (Internal Node)

• Delete (10)



Replacing 10 with smallest value in right subtree

Deleting leaf

Resulting tree

Balanced Search Trees

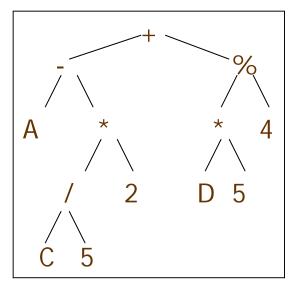
- Kinds of balanced binary search trees
 - height balanced vs. weight balanced
 - "Tree rotations" used to maintain balance on insert/delete
- Non-binary search trees
 - 2/3 trees
 - each internal node has 2 or 3 children
 - all leaves at same depth (height balanced)
 - B-trees
 - Generalization of 2/3 trees
 - Each internal node has between k/2 and k children
 - Each node has an array of pointers to children
 - Widely used in databases

Other (Non-Search) Trees

- Parse trees
 - Convert from textual representation to tree representation
 - Textual program to tree
 - Used extensively in compilers
 - Tree representation of data
 - E.g. HTML data can be represented as a tree
 - called DOM (Document Object Model) tree
 - XML
 - Like HTML, but used to represent data
 - Tree structured

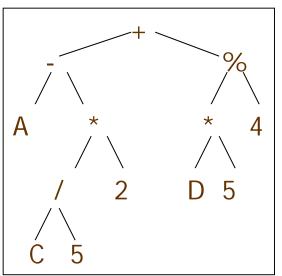
Parse Trees

- Expressions, programs, etc can be represented by tree structures
 - E.g. Arithmetic Expression Tree
 - A-(C/5 * 2) + (D*5 % 4)



Tree Traversal

- Goal: visit every node of a tree
- in-order traversal



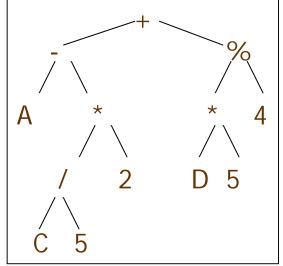
```
void Node::inOrder () {
    if (left != NULL) {
        cout << "("; left->inOrder(); cout << ")";
    }
    cout << data << endl;
    if (right != NULL) right->inOrder()

Output: A - C / 5 * 2 + D * 5 % 4
To disambiguate: print brackets
```

Tree Traversal (contd.)

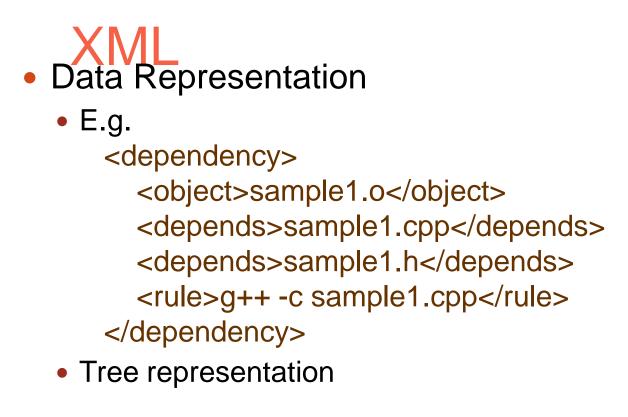
• pre-order and post-order:

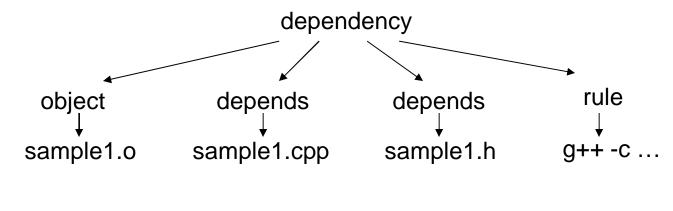
```
void Node::preOrder () {
   cout << data << endl;
   if (left != NULL) left->preOrder ();
   if (right != NULL) right->preOrder ();
}
```



```
Output: + - A * / C 5 2 % * D 5 4
```

```
void Node::postOrder () {
    if (left != NULL) left->preOrder ();
    if (right != NULL) right->preOrder ();
    cout << data << endl;
}
    Output: A C 5 / 2 * - D 5 * 4 % +</pre>
```





Graph Data Structures E.g: Airline networks, road networks, electrical circuits

- Nodes and Edges

• E.g. representation: class Node

- Stores name
- stores pointers to all adjacent nodes
 - i,e. edge == pointer
 - To store multiple pointers: use array or linked list

