
DATA STRUCTURES USING ‘C’

Lecture-23

Tree Data Structures

Trees Data Structures
 Tree
 Nodes
 Each node can have 0 or more children
 A node can have at most one parent

 Binary tree
 Tree with 0–2 children per node

Tree Binary Tree

Trees
 Terminology
 Root no parent
 Leaf no child
 Interior non-leaf
 Height distance from root to leaf

Root node

Leaf nodes

Interior nodes Height

Binary Search Trees
 Key property
 Value at node
 Smaller values in left subtree
 Larger values in right subtree

 Example
 X > Y
 X < Z

Y

X

Z

Binary Search Trees
 Examples

Binary
search trees

Not a binary
search tree

5

10

30

2 25 45

5

10

45

2 25 30

5

10

30

2

25

45

Binary Tree Implementation
Class Node {

int data; // Could be int, a class, etc
Node *left, *right; // null if empty

void insert (int data) { … }
void delete (int data) { … }
Node *find (int data) { … }

…
}

Iterative Search of Binary Tree
Node *Find(Node *n, int key) {

while (n != NULL) {
if (n->data == key) // Found it

return n;
if (n->data > key) // In left subtree

n = n->left;
else // In right subtree

n = n->right;
}
return null;

}
Node * n = Find(root, 5);

Recursive Search of Binary Tree
Node *Find(Node *n, int key) {

if (n == NULL) // Not found
return(n);

else if (n->data == key) // Found it
return(n);

else if (n->data > key) // In left subtree
return Find(n->left, key);

else // In right subtree
return Find(n->right, key);

}
Node * n = Find(root, 5);

Example Binary Searches
 Find (root, 2)

5

10

30

2 25 45

5

10

30

2

25

45
10 > 2, left

5 > 2, left

2 = 2, found

5 > 2, left

2 = 2, found

root

Example Binary Searches
 Find (root, 25)

5

10

30

2 25 45

5

10

30

2

25

45
10 < 25, right

30 > 25, left

25 = 25, found

5 < 25, right

45 > 25, left

30 > 25, left

10 < 25, right

25 = 25, found

Types of Binary Trees
 Degenerate – only one child
 Complete – always two children
 Balanced – “mostly” two children
 more formal definitions exist, above are intuitive ideas

Degenerate
binary tree

Balanced
binary tree

Complete
binary tree

Binary Trees Properties
 Degenerate
 Height = O(n) for n

nodes
 Similar to linked list

 Balanced
 Height = O(log(n))

for n nodes
 Useful for searches

Degenerate
binary tree

Balanced
binary tree

Binary Search Properties
 Time of search
 Proportional to height of tree
 Balanced binary tree
 O(log(n)) time

 Degenerate tree
 O(n) time
 Like searching linked list / unsorted array

Binary Search Tree Construction
 How to build & maintain binary trees?
 Insertion
 Deletion

 Maintain key property (invariant)
 Smaller values in left subtree
 Larger values in right subtree

Binary Search Tree – Insertion
 Algorithm

1. Perform search for value X
2. Search will end at node Y (if X not in tree)
3. If X < Y, insert new leaf X as new left subtree for

Y
4. If X > Y, insert new leaf X as new right subtree for

Y
 Observations

 O(log(n)) operation for balanced tree
 Insertions may unbalance tree

Example Insertion
 Insert (20)

5

10

30

2 25 45

10 < 20, right

30 > 20, left

25 > 20, left

Insert 20 on left

20

Binary Search Tree – Deletion
 Algorithm

1. Perform search for value X
2. If X is a leaf, delete X
3. Else // must delete internal node

a) Replace with largest value Y on left subtree
OR smallest value Z on right subtree

b) Delete replacement value (Y or Z) from subtree

Observation
 O(log(n)) operation for balanced tree
 Deletions may unbalance tree

Example Deletion (Leaf)
 Delete (25)

5

10

30

2 25 45

10 < 25, right

30 > 25, left

25 = 25, delete

5

10

30

2 45

Example Deletion (Internal Node)
 Delete (10)

5

10

30

2 25 45

5

5

30

2 25 45

2

5

30

2 25 45

Replacing 10
with largest
value in left

subtree

Replacing 5
with largest
value in left

subtree

Deleting leaf

Example Deletion (Internal Node)
 Delete (10)

5

10

30

2 25 45

5

25

30

2 25 45

5

25

30

2 45

Replacing 10
with smallest
value in right

subtree

Deleting leaf Resulting tree

Balanced Search Trees
 Kinds of balanced binary search trees
 height balanced vs. weight balanced
 “Tree rotations” used to maintain balance on

insert/delete
 Non-binary search trees
 2/3 trees
 each internal node has 2 or 3 children
 all leaves at same depth (height balanced)

 B-trees
 Generalization of 2/3 trees
 Each internal node has between k/2 and k children

 Each node has an array of pointers to children
 Widely used in databases

Other (Non-Search) Trees
 Parse trees
 Convert from textual representation to tree

representation
 Textual program to tree
 Used extensively in compilers

 Tree representation of data
 E.g. HTML data can be represented as a tree
 called DOM (Document Object Model) tree

 XML
 Like HTML, but used to represent data
 Tree structured

Parse Trees
 Expressions, programs, etc can be represented by

tree structures
 E.g. Arithmetic Expression Tree
 A-(C/5 * 2) + (D*5 % 4)

+
- %

A * * 4

/ 2 D 5

C 5

Tree Traversal
 Goal: visit every node of a tree
 in-order traversal

void Node::inOrder () {
if (left != NULL) {

cout << “(“; left->inOrder(); cout << “)”;
}
cout << data << endl;
if (right != NULL) right->inOrder()

}Output: A – C / 5 * 2 + D * 5 % 4
To disambiguate: print brackets

+
- %

A * * 4

/ 2 D 5

C 5

Tree Traversal (contd.)
 pre-order and post-order:

void Node::preOrder () {
cout << data << endl;
if (left != NULL) left->preOrder ();
if (right != NULL) right->preOrder ();

}

void Node::postOrder () {
if (left != NULL) left->preOrder ();
if (right != NULL) right->preOrder ();
cout << data << endl;

}

Output: + - A * / C 5 2 % * D 5 4

Output: A C 5 / 2 * - D 5 * 4 % +

+
- %

A * * 4

/ 2 D 5

C 5

XML
 Data Representation
 E.g.

<dependency>
<object>sample1.o</object>
<depends>sample1.cpp</depends>
<depends>sample1.h</depends>
<rule>g++ -c sample1.cpp</rule>

</dependency>
 Tree representation

dependency

object depends

sample1.o sample1.cpp

depends

sample1.h

rule

g++ -c …

Graph Data Structures
 E.g: Airline networks, road networks, electrical circuits
 Nodes and Edges
 E.g. representation: class Node

 Stores name
 stores pointers to all adjacent nodes

 i,e. edge == pointer
 To store multiple pointers: use array or linked list

Ahm’bad

Delhi

Mumbai

Calcutta

Chennai
Madurai

End of Chapter

