DATA STRUCTURES USING 'C'

Lecture-03

Data Structures

Basic Concepts

Overview: System Life Cycle
Algorithm Specification
Data Abstraction
Performance Analysis
Performance Measurement

Data Structures

- What is the "Data Structure"?
 - Ways to represent data
- Why data structure?
 - To design and implement large-scale computer system
 - Have proven correct algorithms
 - The art of programming
- How to master in data structure?
 - practice, discuss, and think

System Life Cycle

- Summary
 - RADRCV
- Requirements
 - What inputs, functions, and outputs
- Analysis
 - Break the problem down into manageable pieces
 - Top-down approach
 - Bottom-up approach

System Life Cycle(Cont.)

- Design
 - Create abstract data types and the algorithm specifications, language independent
- Refinement and Coding
 - Determining data structures and algorithms
- Verification
 - Developing correctness proofs, testing the program, and removing errors

Verification

Correctness proofs

- Prove program mathematically
 - time-consuming and difficult to develop for large system

Testing

- Verify that every piece of code runs correctly
 - provide data including all possible scenarios

Error removal

Guarantee no new errors generated

Notes

- Select a proven correct algorithm is important
- Initial tests focus on verifying that a program runs correctly, then reduce the running time

Chapter 1 Basic Concepts

- Overview: System Life Cycle
- Algorithm Specification
- Data Abstraction
- Performance Analysis
- Performance Measurement

Algorithm Specification

Definition

- An algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In addition, all algorithms must satisfy the following criteria:
- (1) *Input*. There are zero or more quantities that are externally supplied.
- (2) Output. At least one quantity is produced.
- (3) *Definiteness*. Each instruction is clear and unambiguous.
- (4) *Finiteness*. If we trace out the instructions of an algorithm, then for all cases, the algorithm terminates after a finite number of steps.
- (5) *Effectiveness*. Every instruction must be basic enough to be carried out, in principle, by a person using only pencil and paper. It is not enough that each operation be definite as in (3); it also must be feasible.

Describing Algorithms

- Natural language
 - English, Chinese
 - Instructions must be definite and effectiveness
- Graphic representation
 - Flowchart
 - work well only if the algorithm is small and simple
- Pseudo language
 - Readable
 - Instructions must be definite and effectiveness
- Combining English and C++
 - In this text

Translating a Problem into an Algorithm

- Problem
 - Devise a program that sorts a set of n > = 1 integers
- Step I Concept
 - From those integers that are currently unsorted, find the smallest and place it next in the sorted list
- Step II Algorithm

```
    for (i= 0; i< n; i++){
        Examine list[i] to list[n-1] and suppose that the smallest integer is list[min];
        Interchange list[i] and list[min];
    }</li>
```

Translating a Problem into an Algorithm(Cont.)

Step III - Coding

```
void sort(int *a, int n)
{
    for (i= 0; i< n; i++)
    {
      int j= i;
      for (int k= i+1; k< n; k++){
        if (a[k]< a[j]) j= k;
      int temp=a[i]; a[i]=a[j]; a[j]=temp;
    }
}</pre>
```

Correctness Proof

Theorem

• Function sort(a, n) correctly sorts a set of n > = 1 integers. The result remains in a[0], ..., a[n-1] such that a[0] < = a[1] < = ... < = a[n-1].

Proof:

```
For i = q, following the execution of line 6-11, we have a[q] <= a[r], q < r <= n-1.
```

For i > q, observing, a[0], ..., a[q] are unchanged.

Hence, increasing i, for i = n-2, we have

$$a[0] <= a[1] <= ... <= a[n-1]$$

Recursive Algorithms

- Direct recursion
 - Functions call themselves
- Indirect recursion
 - Functions call other functions that invoke the calling function again
- When is recursion an appropriate mechanism?
 - The problem itself is defined recursively
 - Statements: if-else and while can be written recursively
 - Art of programming
- Why recursive algorithms?
 - Powerful, express an complex process very clearly

Recursive Implementation of Binary Search

```
int binsearch(int list[], int searchnum, int left, int right)
{// search list[0]<= list[1]<=...<=list[n-1] for searchnum
int middle;
while (left<= right){
  middle= (left+ right)/2;
  switch(compare(list[middle], searchnum)){
   case -1: left= middle+ 1;
       break;
                                            int compare(int x, int y)
   case 0: return middle;
                                             if (x < y) return -1;
   case 1: right= middle- 1; break;
                                             else if (x== y) return 0;
                                             else return 1;
return -1;}
```

Recursive Implementation of Binary Search

```
int binsearch(int list[], int searchnum, int left, int right)
{// search list[0]<= list[1]<=...<=list[n-1] for searchnum
int middle;
while (left<= right){
 middle= (left+ right)/2;
  switch(compare(list[middle], searchnum)){
   case -1:return binsearch(list, searchnum, middle+1, right);
   case 0: return middle;
   case 1: return binsearch(list, searchnum, left, middle- 1);
return -1;
```

Chapter 1 Basic Concepts

- Overview: System Life Cycle
- Algorithm Specification
- Data Abstraction
- Performance Analysis
- Performance Measurement

Data Abstraction

- Types of data
 - All programming language provide at least minimal set of predefined data type, plus user defined types
- Data types of C
 - Char, int, float, and double
 - may be modified by short, long, and unsigned
 - Array, struct, and pointer

Data Type

- Definition
 - A data type is a collection of objects and a set of operations that act on those objects
- Example of "int"
 - Objects: 0, +1, -1, ..., Int_Max, Int_Min
 - Operations: arithmetic(+, -, *, /, and %), testing(equality/inequality), assigns, functions
- Define operations
 - Its *name*, possible *arguments* and *results* must be specified
- The design strategy for representation of objects
 - Transparent to the user

Abstract Data Type

- Definition
 - An abstract data type(ADT) is a data type that is organized in such a way that the specification of the objects and the specification of the operations on the objects is separated from the representation of the objects and the implementation of the operation.#
- Why abstract data type?
 - implementation-independent

Classifying the Functions of a Data Type

Creator/constructor:

Create a new instance of the designated type

Transformers

 Also create an instance of the designated type by using one or more other instances

Observers/reporters

 Provide information about an instance of the type, but they do not change the instance

Notes

 An ADT definition will include at least one function from each of these three categories

An Example of the ADT

```
structure Natural Number is
 objects: an ordered subrange of the integers starting at zero and
    ending at the maximum integer (INT_MAX) on the computer
 functions:
  for all x, y is Nat_Number, TRUE, FALSE is Boolean and where .
+, -, <, and == are the usual integer operations
 Nat_NoZero()
                ::= 0
 Boolean Is_Zero(x) ::= if (x) return FALSE
 Nat_No Add(x, y) ::= if ((x+y) \le INT_MAX) return x+ y
                          else return INT_MAX
 Boolean Equal(x, y) ::= if (x== y) return TRUE
                          else return FALSE
 Nat_No Successor(x) ::= if (x== INT_MAX) return x
                          else return x+ 1
 Nat_No Subtract(x, y) ::= if (x< y) return 0
                          else return x-y
end Natural_Number
```

Chapter 1 Basic Concepts

- Overview: System Life Cycle
- Algorithm Specification
- Data Abstraction
- Performance Analysis
- Performance Measurement

Performance Analysis

- Performance evaluation
 - Performance analysis
 - Performance measurement
- Performance analysis prior
 - an important branch of CS, complexity theory
 - estimate *time* and *space*
 - machine independent
- Performance measurement -posterior
 - The actual *time* and *space* requirements
 - machine dependent

Performance Analysis(Cont.)

- Space and time
 - Does the program efficiently use primary and secondary storage?
 - Is the program's running time acceptable for the task?
- Evaluate a program generally
 - Does the program *meet* the original *specifications* of the task?
 - Does it work correctly?
 - Does the program contain documentation that show how to use it and how it works?
 - Does the program effectively use functions to create logical units?
 - Is the program's code readable?

Performance Analysis(Cont.)

- Evaluate a program
 - MWGWRERE

Meet specifications, Work correctly,

Good user-interface, Well-documentation,

Readable, Effectively use functions,

Running time acceptable, Efficiently use space

- How to achieve them?
 - Good programming style, experience, and practice
 - Discuss and think

Space Complexity

- Definition
 - The space complexity of a program is the amount of memory that it needs to run to completion
- The space needed is the sum of
 - Fixed space and Variable space
- Fixed space
 - Includes the instructions, variables, and constants
 - Independent of the number and size of I/O
- Variable space
 - Includes dynamic allocation, functions' recursion
- Total space of any program
 - $S(P) = c + S_p(Instance)$

Examples of Evaluating Space

```
float abc(float a, float b, float c)
{
  return a+b+b*c+(a+b-c)/(a+b)+4.00;
}
```

```
S_{abc}(I)=0
```

```
float sum(float list[], int n)
{
  float fTmpSum= 0;
  int i;
  for (i= 0; i< n; i++)
   fTmpSum+= list[i];
  return fTmpSum;
}
  S<sub>sum</sub>(I)= S<sub>sum</sub> (n)= 0
```

```
float rsum(float list[], int n)
{
   if (n) return rsum(list, n-1)+ list[n-1];
   return 0;
}
S_{rsum}(n)= 4*n

parameter:float(list[]) 1
  parameter:integer(n) 1
  return address 1
  return value 1
```

Time Complexity

- Definition
 - □The time complexity, T(p), taken by a program P is the sum of the compile time and the run time
- ■Total time
 - ■T(P)= compile time + run (or execution) time
 - $= c + t_p$ (instance characteristics)

Compile time does not depend on the instance characteristics

- ■How to evaluate?
 - ■Use the system clock
 - Number of steps performed
 - machine-independent
- Definition of a program step
 - □ A program step is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics
 - (10 additions can be one step, 100 multiplications can also be one step)
 - (p33~p35 有計算C++ 語法之 steps 之概述, 原則是一個表示式一步)

Examples of Determining Steps

```
☐ the first method: count by a program
float sum(float list[], int n)
 float tempsum= 0; count++; /* for assignment */
 int i;
 for(i=0; i< n; i++) \{
  count++; /* for the for loop */
  tempsum+= list[i]; count++; /* for assignment
                                                float sum(float list[], int n)
                /* last execution of for */
 count++;
                                                  float tempsum= 0
                /* for return */
 count++;
                                                  int i:
 return tempsum;
                                                  for (i=0; i< n; i++)
                                                   count+= 2;
                                                  count+= 3;
                          2n + 3
                                                  return 0;
```

Examples of Determining Steps(Cont.)

```
t_{rsum}(0) = 2
float rsum(float list[], int n)
                                           t_{rsum}(n) = 2 + t_{rsum}(n-1)
 count ++; /* for if condition */
                                                    = 2 + 2 + t_{rsum}(n-2)
 if (n) {
                                                    = 2*2 + t_{rsum}(n-2)
  count++; /* for return and rsum invocation */
  return rsum(list, n-1)+ list[n-1];
                                                    = 2n + t_{rsum}(0) = 2n + 2
                           void add(int a[][MaxSize], int b[][MaxSize],
 count++; //return
                                            int c[][MaxSize], int rows, int cols)
 return list[0];
                            int i, j;
                            for (i=0; i< rows; i++)
 2n+2
                                                       p.39, program 1.19
                             for (j=0; j< cols; j++)
                                                       自行計算
                               c[i][j]= a[i][j] + b[i][j];
                                         2rows*cols+2rows+1
```

Examples of Determining

The second method: build a table to count

s/e: steps per execution

frequency: total numbers of times each statements is executed

Statement	s/e	Frequency	Total Steps
<pre>void add(int a[][MaxSize], { int i, j; for (i=0; i< rows; i++) for (j=0; j< cols; j++) c[i][j]= a[i][j] + b[i][j]; }</pre>	0 0 0 1 1 1	0 0 0 rows+ 1 rows*(cols+1) rows*cols	0 0 0 rows+ 1 rows*cols+ rows rows*cols
}	0	0	0

Total

2rows*cols+2rows+1

Remarks of Time Complexity

- □ Difficulty: the time complexity is not dependent solely on the number of inputs or outputs
- ■To determine the step count
 - ■Best case, Worst case, and Average
- Example

```
int binsearch(int list[], int searchnum, int left, int right)
{// search list[0]<= list[1]<=...<=list[n-1] for searchnum
int middle;
while (left<= right){
  middle= (left+ right)/2;
  switch(compare(list[middle], searchnum)){
    case -1: left= middle+ 1;
        break;
    case 0: return middle;
    case 1: right= middle- 1;
  }}
return -1;}</pre>
```

Asymptotic Notation(O, Ω , Θ)

motivation

- Target: Compare the time complexity of two programs that computing the same function and predict the growth in run time as instance characteristics change
- Determining the exact step count is difficult task
- Not very useful for comparative purpose

```
ex: C_1n^2 + C_2n <= C_3n for n <= 98, (C_1=1, C_2=2, C_3=100)
C_1n^2 + C_2n > C_3n for n > 98,
```

 Determining the exact step count usually not worth(can not get exact run time)

Asymptotic notation

- Big "oh" O
 - upper bound(current trend)
- \circ Omega Ω
 - lower bound
- Theta Θ
 - upper and lower bound

Asymptotic Notation O

- Definition of Big "oh"
 - f(n) = O(g((n))) iff there exist **positive** constants c and n_0 such that f(n) <= cg(n) for all n, $n >= n_0$

Examples

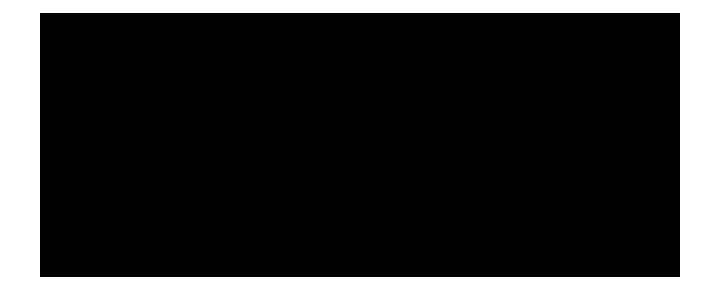
- \circ 3n+ 2= O(n) as 3n+ 2<= 4n for all n>= 2
- $10n^2 + 4n + 2 = O(n^2)$ as $10n^2 + 4n + 2 < = 11n^2$ for n > = 5
- \circ 3n+2<> O(1), 10n²+ 4n+ 2<> O(n)

Remarks

- g(n) is the least upper bound
 - $n=O(n^2)=O(n^{2.5})=O(n^3)=O(2^n)$
- O(1): constant, O(n): linear, O(n²): quadratic,
 O(n³): cubic, and O(2ⁿ): exponential

Asymptotic Notation O (Cont.)

- Remarks on "="
 - O(g(n)) = f(n) is meaningless
 - "=" as "is" and not as "equals"
- Theorem
 - If $f(n) = a_m n^m + ... + a_1 n + a_0$, then $f(n) = O(n^m)$
 - Proof:



Asymptotic Notation Ω

Definition

• $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that f(n) > = cg(n) for all n, $n > = n_0$

Examples

- $3n + 2 = \Omega(n)$ as 3n + 2 > = 3n for n > = 1
- $10n^2 + 4n + 2 = \Omega(n^2)$ as $10n^2 + 4n + 2 > = n^2$ for n > = 1
- $6*2^n + n^2 = \Omega(2^n)$ as $6*2^n + n^2 > = 2^n$ for n > = 1

Remarks

- The largest lower bound
 - $3n+3=\Omega(1)$, $10n^2+4n+2=\Omega(n)$; $6*2^n+n^2=\Omega(n^{100})$

Theorem

• If $f(n) = a_m n^m + ... + a_1^n + a_0$ and $a_m > 0$, then $f(n) = \Omega(n^m)$

Asymptotic Notation ©

Definition

• $f(n) = \Theta(g(n))$ iff there exist positive constants c_1 , c_2 , and n_0 such that $c_1g(n) <= f(n) <= c_2g(n)$ for all n, $n>=n_0$

Examples

- $3n+2=\Theta(n)$ as 3n+2>=3n for n>1 and 3n+2<=4n for all n>=2
- $10n^2 + 4n + 2 = \Theta(n^2)$; $6*2^n + n^2 = \Theta(2^n)$

Remarks

- Both an upper and lower bound
- $3n+2 < >\Theta(1)$; $10n^2 + 4n + 2 < >\Theta(n)$

Theorem

• If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Theta(n^m)$

Example of Time Complexity Analysis

```
Statement
                              Asymptotic complexity
void add(int a[][Max.....)
 int i, j;
 for(i= 0; i< rows; i++)
                              \Theta(rows)
  for(j=0; j< cols; j++)
                              \Theta(rows*cols)
                              Θ(rows*cols)
   c[i][j]= a[i][j]+ b[i][j];
Total
                              ⊕(rows*cols)
```

Example of Time Complexity

Analysis (Cont)
The more global approach to count steps: focus the variation of instance characterics. int binsearch(int list[], int) { int middle; while (left<= right){ middle= (left+ right)/2; switch(compare(list[middle], searchnum)){ case -1: left= middle+ 1; break; worst case $\Theta(\log n)$ case 0: return middle; case 1: right= middle- 1; return -1;

Example of Time Complexity

Analysis(Cont.) void perm(char *a, int k, int n)

```
{//generate all the 排列 of
// a[k],...a[n-1]
char temp;
if (k == n-1){
  for(int i= 0; i<=n; i++)
         cout << a[i]<<" ";
  cout << endl;
else {
for(i = k; i < n; i++){
 temp=a[k];a[k]=a[i];a[i]=temp;
 perm(a, k+1, n);
 temp=a[k];a[k]=a[i];a[i]=temp;
```

```
k= n-1, \ \Theta(n) k< n-1, \ else for loop, n-k times each call T_{perm}(k+1, n-1) hence, \Theta(T_{perm}(k+1, n-1)) so, T_{perm}(k, n-1) = \Theta((n-k)(T_{perm}(k+1, n-1)))
```

Using the substitution, we have T_{perm} (0, n-1)= $\Theta(n(n!))$, n>= 1

Example of Time Complexity Analysis (Cont.)

- An n-by-n matrix of the integers from 1 to n² such that the sum of each row and column and the two major diagonals is the same
- Example, n= 5(n must be odd)

15	8	1	24	17
16	14	7	5	23
22	20	13	6	4
3	21	19	12	10
9	2	25	18	11

Magic Square (Cont.)

- Coxeter has given the simple rule
 - Put a one in the middle box of the top row.
 Go up and left assigning numbers in increasing order to empty boxes.
 - If your move causes you to jump off the square, figure out where you would be if you landed on a box on the opposite side of the square.
 - Continue with this box.
 - If a box is occupied, go down instead of up and continue.

Magic Square (Cont.)

```
procedure MAGIC(square, n)
// for n odd create a magic square which is declared as an array
// square(0: n-1, 0: n-1)
// (i, j) is a square position. 2 \le key \le n^2 is integer valued
if n is even the [print("input error"); stop]
SQUARE<- 0
square(0, (n-1)/2)<- 1; // store 1 in middle of first row
key<- 2; i<- 0; j<- (n-1)/2 // i, j are current position
while key \ll n^2 do
 (k, l)<- ((i-1) mod n, (j-1)mod n) // look up and left
 if square(k, l) <> 0
   then i<- (i+1) mod n // square occupied, move down
 else (i, j)<- (k, l) // square (k, l) needs to be assigned
square(i, j)<- key // assign it a value
key < - key + 1
end
print(n, square) // out result
end MAGIC
```

Practical Complexities

- Time complexity
 - Generally some function of the instance characteristics
- Remarks on "n"
 - If $Tp=\Theta(n)$, $Tq=\Theta(n^2)$, then we say P is faster than Q for "sufficiently large" n.
 - since Tp <= cn, $n >= n_1$, and $Tq <= dn_2$, $n >= n_2$, but $cn <= dn^2$ for n >= c/d so P is faster than Q whenever $n >= max\{n_1, n_2, d/c\}$
 - See Table 1.7 and Figure 1.3
- For reasonable large n, n> 100, only program of small complexity, n, nlog n, n², n³ are feasible
 - See Table 1.8

Table 1.8 Times on a 1 bsps

computerTime for f(n) instructions on 10⁹ instr/sec computer

n	f(n)= n	f(n)=log ₂ n	f(n)=n ²	f(n)=n ³	³ f(n)=n ⁴	f(n)=n ¹⁰	$f(n)=2^n$
10	.01us	.03us	.1us	1us	10us	10s	1us
20	.02us	.09us	.4us	8us	160us	2.84hr	1ms
30	.03us	.15us	.9us	27us	810us	6.83d	1s
40	.04us	.21us	1.6us	64us	2.56ms	12136d	18.3m
50	.05us	.28us	2.5us	125us	6.25us	3.1y	13d
100	.10us					3171y	•
1,000	1.00us	0.96us	1ms	1s	16.67m	3*10 ¹³ y	32*10 ²⁸³ y
10,000	10.00us	130.03us	100ms	16.67m	115.7d	3*10 ²³ y	
100,000	100.00us	1.66ms	10s	11.57d	3171y	3*10 ³³ y	
1,000,000	1.00ms	19.92ms	16.67m	31.71y	3*10 ⁷ y	3*10 ⁴³ y	

Table 1.7 Function values

Instance characteristic n

Time	Name	1	2	4	8	16	32
1	Constant	1	1	1	1	1	1
log n	Logarithmic	0	1	2	3	4	5
n	Linear	1	2	4	8	16	32
nlog n	Log Linear	0	2	8	24	64	160
n²	Quadratic	1	4	16	64	256	1024
n ³	Cubic	1	8	61	512	4096	32768
2 ⁿ	Exponential	2	4	16	256	65536	4294967296
n!	Factorial	1	2	54	40326	2092278988800	0 26313*10 ³³

Chapter 1 Basic Concepts

- Overview: System Life Cycle
- Algorithm Specification
- Data Abstraction
- Performance Analysis
- Performance Measurement

Performance Measurement

```
□Obtaining the actual space and time of a program
□Using Borland C++, '386 at 25 MHz
□Time(hsec): returns the current time in hundredths of a sec.
□Goal: 得到測量結果的曲線圖, 並進而求得執行時間方程式
   Step 1, 分析\Theta(g(n)), 做為起始預測
  Step 2, write a program to test
  -技巧1: to time a short event, to repeat it several times
  -技巧2: suitable test data need to be generated
Example: time(start);
         for(b=1; b \le r[i]; b++)
            k=seqsearch(a,n[j],0);// 被測對象
         time(stop);
         totaltime = stop -start;
         runtime = totaltime/r[j]; // 結果參考fig 1.5, fig1.6
```

Summary

- Overview: System Life Cycle
- Algorithm Specification
 - Definition, Description
- Data Abstraction ADT
- Performance Analysis
 - Time and Space
 - O(g(n))
- Performance Measurement
- Generating Test Data
 - analyze the algorithm being tested to determine classes of data