ATASTRUCTURES USING ‘C’

Lecture N0.02

Data Structures

n A Set of Instructions
n Data Structures + Algorithms

n Data Structure = A Container stores
Data

n Algoirthm = Logic + Control

Functions of Data Structures

n Add
— Index
— Key
— Position
— Priority

n Get

n Change

n Delete

n Array

n

n

n

n

Stack

Queue

Linked List
Tree

-Heap

Hash Table
Priority Queue

How many Algorithms?

n Countless

n

n

n

n

Greedy

Divide and Conqguer
Dynamic Programming
Exhaustive Search

n

n

n

n

Must Meet Requirement
High Performance
Low RAM footprint

Easy to implement
— Encapsulated

n Overview: System Life Cycle
n Algorithm Specification

n Data Abstraction

n Performance Analysis

n Performance Measurement

n Good programmers regard large-scale
computer programs as systems that
contain many complex interacting parts.

n As systems, these programs undergo a
development process called the system
life cycle.

n We consider this cycle as consisting of
five phases.
— Requirements
— Analysis:
— Design:
— Refinement and Coding

— Verification
e Program Proving
e Testing
e Debugging

n 1.2.1 Introduction

— An IS a finite set of instructions that
accomplishes a particular task.
— Criteria

 input: zero or more quantities that are externally supplied
e output: at least one quantity is produced

» definiteness: clear and unambiguous

 finiteness: terminate after a finite number of steps

» effectiveness: instruction is basic enough to be carried out

— A program does not have to satisfy the
criteria.

n Representation
— A natural language, like English or Chinese.
— A graphic, like flowcharts.
— A computer language, like C.

n Algorithms + Data structures =
Programs [Niklus Wirth]

n Sequential search vs. Binary search

1.2 Algorithm Specification (3/10)

n Example 1.1 [Selection sort]:

— From those integers that are currently unsorted, find the
smallest and place it next in the sorted list.

o Al 21 B[4l

0O 10

1 10 20

2 10 20 30

3 10 20 30 40
for (1 = 0; 1 < n; i++) {

Examine list[1] to list[n-1] and suppose that the
smallest i1nteger 1s at list[min];

Interchange list[1] and list[min];

}

Program 1.1: Selection sort algorithm

n Program 1.3
contains a
complete program
which you may run
on your computer

#include <stdio.h>
#include <math.h>
#fdefine MAX_SIZE 101
#define SWAP(x,y,t) ((t) = (x), (x)= (y), (y) = (t))
void sort(int [],int); /*selection sort */
void main (void)
{
Int i, n:
int list [MAX_SIZE];
printf ("Enter the number of numbers to generate: ");
scanf ("%d", &n) ;

if(n< 1 || n> MAX_-SIZE) {
fprintf (stderr, "Improper value of n\n");
exit (1);
}
for (i = 0; 1 < n; 1i++) {/*randomly generate numbers*/
list[i] = rand() % 1000;
printf("sd ",list[i]);
}

sort (list,n);
printf ("\n Sorted array:\n ");
for (i = 0; 1 < n; i++) /* print out sorted numbers */
printf("%$d ",list[i]);
printf ("\n");
}
void sort(int list[],int n)

{

int i, j, min, temp;

for (i = 0; 1 < n-1; 1i++) {
min = 1i;
for (j = i+1; j < n; Jj++)
if (list[j] < list[min])
min = j;

SWAP(list[i],list([min],temp);

}

Program 1.3: Selection sort

n Example 1.2 [Binary search]:
[0] [1] [2] 3] [4] [5] [6]

8 14 26 30 43 50 52
left right middle listfmiddle] : searchnum

0 6 3 30 < 43

4 6 5 50 > 43

4 4 4 43 == 43

0 6 3 30 > 18

0 2 1 14 < 18

2 2 2 26 > 18

2 1 -

n Searching a sorted list
while (there are more integers to check) {

middle = (left + right) / 2;

if (searchnum < list[middle])
right = middle - 1;

else if (searchnum == listimiddle])
return middle;

else left = middle + 1;

int binsearch(int list[], int searchnum, int left, int right) {
[* search list[0] <= list[1] <= ... <= list[n-1] for searchnum.
Return its position if found. Otherwise return -1 */
iInt middle;
while (left <= right) {
middle = (left + right)/2;
switch (COMPARE(listfmiddle], searchnum)) {
case -1: left = middle + 1,
break;
case O : return middle;
case 1 : right = middle — 1;
}
}

return -1;

}

*Program 1.6: Searching an ordered list

n 1.2.2 Recursive algorithms

— Beginning programmer view a function as
something that is invoked (called) by another
function

e |t executes its code and then returns control to the
calling function.

— This perspective ignores the fact that functions

can call themselves ().
— They may call other functions that invoke the
calling function again ().

« extremely powerful

 frequently allow us to express an otherwise
complex process in very clear term

— We should express a recursive algorithm
when the problem itself is defined recursively.

1.2 Algorithm Specification (9/10)

n Example 1.3 [Binary search]:

int binsearch(int list[], int searchnum, int left,
int right)
{
/% gsearch list[0] <= ligt[l] <= =~ = - == list[n—1] for

searchnum. Return its position if found. Otherwise
return -1 */
int middle;
if (left <= right) {
middle = (left + right)/2;
switch (COMPARE (list[middle], searchnum)) ({
case —1: return
binsearch(list, searchnum, middle + 1, right);
case 0 : return middle;
case 1 : return
binsearch(list, searchnum, left, middle — 1);

}

return -1;

}

Program 1.7: Recursive implementation of binary search

n Example 1.4 [Permutations]:

volid perm(char *list, int 1, int n)
/* generate all the permutations of list[i]

{

int j, temp;

if (i == n) 4
for (j = 0; j <= n; Jj++)
printf ("%e™; listlil)s
printf (" “)i
}
else {

/* list[i] to list[n] has more than one permutation,

generate these recursively */
ter (] = 1y J <= iy 3%} {

SWAP(list[i],list[j],temp);

perm(list,i+1,n);

SWAP(list[i],1list[]j],temp);

to 1list [n]

*d

Program 1.8: Recursive permutation generator

IvO perm:
IvO SWAP: 1=0,

Iv2 perm: 1=2,
print: abc

Iv2 perm: 1=2,
print: acb

IvO SWAP:
IvO SWAP: 1=0,

Iv2 perm: 1=2,
print: bac

Iv2 perm: 1=2,
print: bca

IvO SWAP:
IvO SWAP: 1=0,

Iv2 perm: 1=2,
print: cba

Iv2 perm: 1=2,
print: cab

IvO SWAP: 1=0,

() =)
Il
oN

n=2

n=2

n=2

n=2

abc
abc

abc

acb

abc
abc

bac

bca

bac
abc

cha

n Data Type

A IS a collection of and a

set of that act on those objects.

— For example, the data type 11! consists of the
objects

and the operations

n The data types of C
— The basic data types: char, int, float and double
— The group data types: array and struct
— The pointer data type
— The user-defined types

n Abstract Data Type

— An IS a data type
that is organized in such a way that
and

IS separated from
the representation of the objects and
the implementation of the operations.

— We know what is does, but not necessarily
how it will do it.

n Specification vs. Implementation
— An ADT Is implementation independent

— Operation specification
 function name
 the types of arguments
* the type of the results

— The functions of a data type can be
classify into several categories:
e creator / constructor
 transformers
» observers / reporters

1.3 Data abstraction (4/4)
n Example 1.5 [Abstract data type

N - structure Natural —Number is
objects: an ordered subrange of the integers starting at zero and ending at the
maximum integer (/INT-MAX) on the computer
functions:
for all x, y € Nat_Number, TRUE, FALSE € Boolean
and where +, —, <, and == are the usual integer operations

Nat—_No Zero() e ¥

Boolean Is—Zero(x) = if (x) return FALSE
else return TRUE

Nat—No Add(x, y) n= if ((x+y) <= INT-MAX) return x + y
else return INT-MAX

Boolean Equal(x, y) = if (x==y) return TRUE
else return FALSE

Nat—No Successor(x) = if (x == INT-MAX) return x
else return x + 1

Nat—No Subtract(x, y) = if(x<y) return O
else return x — y

end Natural —Number .= Is defined as

Structure 1.1: Abstract data type Natural —Number

