ATA STRUCTURESUSING ‘C’

-
- Y W W W

Data Structures

Diifierent types or Serting

lechnicues useel in Data
STrUCTURES

/ T Dot
Notes on Quicksort

Quicksort ismore widely used than any other sort.

Quicksort iswell-studied, not difficult to implement,
workswell on avariety of data, and consumes fewer
resourcesthat other sortsin nearly all situations.
Quicksort isO(n*log n) time, and O(log n) additional
space dueto recursion.

_
Quicksort Algorithm

Quicksort isadivide-and-conguer method for sorting.
It works by partitioning an array into parts, then
sorting each part independently.

The crux of the problem ishow to partition the array

such that the following conditionsare true:

~There Is sone elenent, a[i], where afi]
IS inits final position.

—For all | <, all]l < allk

“Eor all | ¢ ol - ol |

Quicksort Algorithm (cont)

Asistypical with arecursive program, once you figure out
how to divide your problem into smaller subproblems, the
Implementation isamazingly simple.

Int partition(ltemal], int |, int r);
void quicksort(ltemal[], int |, int r)
a0
1f (r <=1) return;
| = partition(a, |, r);
qui cksort(a, |, 1-1);

qui cksort(a, i+1, r);

}

Quicksort

Quicksort.
. Partition array so that:

- some partitioning element a [m] is inits final position
- no larger element to the left of m C. A.R. Hoare
- no smaller element to the right of m

partitioning
P> element

!

oglu|z|c|k|[s|o|rR|T|[I|s|c|o]|o ¥

I|cMo|u|s|/o|RrR|[T|S]|0]oO
<N

<L ﬁ > L

partitioned array

21

Quicksort

Quicksort.
. Partition array so that:
- some partitioning element a [m] is inits final position
- no larger element to the left of m
- no smaller element to the right of m

. Sort each "half" recursively. vartitioning

element

!

og|lu|z|c|k|[s|o|rR|T|[I|s|c|o]|o ¥

c ¢ I I K L 0O O 0 Q R S S T U

& Sort each "half." f]

/

-

S —_— . /

Partitioning in Quicksort

- How do we partition the array efficiently?

choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element
- exchange
- repeat until pointers cross

Q

U

| [C|K|[S|O|R|T]I |Ss|c|o|OH

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?
- choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
swap me - repeatuntil pointerscross

4
BJu|/l [C|K|S|O|R|T]I|[S|Cc|Oo|O®

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?
- choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
swap me - repeatuntil pointerscross

4
EJu|/l [C|IK|S|O|R|T]I [S|Cc|OoK™

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?
- choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
swap me - repeatuntil pointerscross

4
EJu|/l [CIK|S|O|R|T]|I |S]|C ™

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?

- choose partition element to berightmost element
- scan from left for larger element

- scan from right for smaller element

- exchange

swap me - repeatuntil pointerscross swap me

4 . 2
EJu|l [C|K[S|O|R|T]|I |sS KNI

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?
- choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
- repeat until pointerscross

BH Ul [Cc|K[S|O|R|T]|I |S BN

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?
- choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
swap médepeat until pointerscross

4
OIB) ' (CK[S[O[R]T]I [s cIEIEID

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?
- choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
swap médepeat until pointerscross

4
C UINEERNEBEELREE s Q¢ 0 O/L

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?

- choose partition element to berightmost element
- scan from left for larger element

- scan from right for smaller element

- exchange

swap médepeat until pointerscross swap me
4 2
OV | C K| S| O R| T HEEESTEOREORENON -

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?
- choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
- repeat until pointerscross

Il ' [c | K[s|o|R| T INNEREICIEIT

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?
- choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
- repeat until pointerscross

ORRENNEN C K|S | O R | T BUNMEENORNNOENON &

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
—How do we partition the array efficiently?
- choose partition element to berightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
- repeat until pointerscross

C | | Crerieam:amE U S Q O O L

- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

y How do we partition the array efficiently?
choose partition element to berightmost element
scan from left for larger element

scan from right for smaller element
Exchange and repeat until pointerscross

y
y
%
y

C I | C Kpgupeam:amm U S Q O O L

- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

y How do we partition the array efficiently?
choose partition element to berightmost element
scan from left for larger element

scan from right for smaller element
Exchange and repeat until pointerscross

y
y
%
y

swap me

4
Cl I CK SIJEEUV S Q O 0L

- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

y How do we partition the array efficiently?
choose partition element to berightmost element
scan from left for larger element

scan from right for smaller element
Exchange and repeat until pointerscross

y
y
%
y

swap me

4
Cl I CKSJIJIIR¥T US QO O L

- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

—How do we partition the array efficiently?
- choosepartition element to berightmost element
- scan from left for larger element

- scan from right for smaller element
- Exchangeand repeat until pointerscross

swap me
4
Cl I € KSR TUSOQOTOL
- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

—How do we partition the array efficiently?
- choosepartition element to berightmost element
- scan from left for larger element

- scan from right for smaller element
- Exchangeand repeat until pointerscross

swap me
4
c |l I € K S OR T US Q O O L
- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

y How do we partition the array efficiently?

y choosepartition element to berightmost element

y scan from left for larger element

y scan from right for smaller element

y Exchangeand repeat until pointerscross swap with

pointers cross partitioning
% element

Cl I C KIFJFORTUSOQOG OL
- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

—How do we partition the array efficiently?
- choosepartition element to berightmost element
- scan from left for larger element

- scan from right for smaller element
- Exchangeand repeat until pointerscross

partition is
complete
Cl I C KL ORTUS SO QT OO S
- partition element unpartitioned - left

- partitioned - right

P —

Quicksort Demo

Illustrates the operation of the basic
algorithm. When thearray ispartitioned, one element
ISin place on thediagonal, the left subarray hasits
upper corner at that element, and theright subarray
hasitslower corner at that element. Theoriginal fileis
divided into two smaller partsthat are sorted
Independently. The left subarray isalways sorted first,
so the sorted result emergesasaline of black dots
moving right and up the diagonal.

e
Why study Heapsort?
It Isawell-known, traditional sorting
algorithm you will be expected to know

Heapsort isalways O(n log n)

yQuicksort isusually O(n log n) but in the
worst case slowsto O(n?)

yQuicksort isgenerally faster, but Heapsort is
better in time-critical applications

= (L -
What isa“heap”?
Definitionsof heap:

1 Alargeareaof memory from which the
programmer can allocate blocks as
needed, and deallocate them (or allow
them to be garbage collected) when no
longer needed

2. A balanced, left-justified binary treein
which no node hasavalue greater than
thevaluein its parent

Heapsort usesthe second definition

Balanced binary trees

v Recall:

y Thedepth of anodeisitsdistancefrom theroot
y Thedepth of atreeisthedepth of the deepest node
vy Abinarytreeof depth isbalanced if all thenodesat depths through have two

children
/\ /\ /\ /\ /\

- - 665656
Baanced Balanced Not balanced

Left-justified binary trees

A balanced binary treeisleft-justified if:
—all theleavesare at the same depth, or
—all theleavesat depth aretotheleft of all

the nodesat depth
- -
O/O\ O O/O\O O/O\ O O/O\O
S5 06 06 50 508 60

Left-justified Not |eft-justified

~ ""(/-

The heap property

A node hasthe heap property if thevaluein
thenodeisaslargeasor larger than the
valuesin itschildren

offo¥oRoNoRo

Blue node has Bluenodehas Blue node does not
heap property heap property have heap property

All leaf nodesautomatically have the heap property
A binary treeisaheap if all nodesin it have the heap
property

.

Given anodethat does not have the heap property,
you can give it the heap property by exchanging its
value with the value of the larger child

—
ol

Blue node does not heap property
have heap property
Thisissometimescalled sifting up

Noticethat the child may have lost the heap
property

“Constructing a heap |

yA tree consisting of asingle node isautomatically aheap

vy Weconstruct aheap by adding nodesoneat atime:
y Addthenodejust totheright of therightmost nodein the deepest level
y If thedeepest level isfull, start anew level

y Examples:

/

Constructing a heap |l

v Each timeweadd anode, we may destroy the heap property of itsparent node
y Tofixthis, wesift up
vy But each timewe sift up, thevalue of thetopmost nodein the sift may increase, and this
may destroy the heap property of its parent node
vy Werepeat thesifting up process, moving up in thetree, until either
y Wereach nodeswhose valuesdon't need to be swapped (becausethe parent is still
larger than both children), or
y Wereach theroot

/

’ Constructing a heap Il
"
10 .

PN A

Other children are not affected

@ @ ﬂ@

« Thenode containing 8 isnot affected because its parent gets
larger, not smaller

- Thenode containing 5isnot affected because its parent gets larger,
not smaller

« Thenode contal nin_(tzj 8 isstill not affected because, although its
parent got smaller, itsparent isstill greater than it wasoriginally

A sample heap

Here'sasample binary tree after it has been heapified

(25)
Pt

Gs) G4 QU (s (o) OB

Noticethat heapified does not mean sorted

Heapifying does not change the shape of the binary
tree; thisbinary treeis balanced and left-justified
because it started out that way

Removing the root

Noticethat the largest number isnow in the root
Suppose we discard the root:

(10
(22,
-

How can we fix the binary tree so it iIsonce again
balanced and left-justified?

Solution: remove therightmost |eaf at the deepest
level and use it for the new root

The method |

Our treeisbalanced and left-justified, but no longer aheap
However, only theroot lacksthe heap property

= ®

- - - -

We can theroot

After doingthis, oneand only oneof itschildren may have
lost the heap property

The method I

Now the left child of theroot (still the number)
lacksthe heap property

= ®

- - - -

We can thisnode

After doing this, one and only one of itschildren
may have lost the heap property

The method Il

Now theright child of theleft child of theroot (still the
number) lacksthe heap property:

(223
(22,

el ®

- - = -

We can thisnode

After doing this, one and only one of itschildren may

have lost the heap property —but it doesn't, because it’s
aleaf

The method IV

Our treeisonce again a heap, because every nodein it
hasthe heap property

(223
(22,

2} ®

- = - -

Onceagain, the largest (or a largest) valueisin theroot
We can repeat this process until the tree becomesempty

Thisproducesasequence of valuesin order largest to
smallest

Sorting

What do heaps have to do with sorting an array?

Here'sthe neat part:

— Becausethe binary tree is balanced and |eft justified, it
can berepresented asan array

—All our operationson binary trees can berepresented as
operationson arrays

— To sort:

Mapping Into anarray

(22,

Q. @@@ @@ =

v 2aagidae e e g g O e
252217192214 (15(18(14(21| 3 | 9 |11

Notice:

—Theleft child of index isat index

—Theright child of index isat index

— Example: thechildren of node (19) are (18)and (X4)

Removing and replacing the root

The“root” isthefirst element in the array

The“rightmost node at the deepest level” isthe last element
Swvap them...

Ol o 3 s 6 B0 e T 1D
2522117119|22114|15|1814|21|3 | 9 |11

S el R ik
2200 7 193 2200 4 1 B 181 442 1 3O 125

...And pretend that the last element in thearray no longer
exists—that is, the “last index” is (9)

Reheap and repeat

Reheap theroot node (index O, containing)...

O vl 2 B s e e B g e e 11 R 1D
112217 221141151814 |21 25

1 1 1 1 1

2 7 .o Rty 48 U B 12
22122117|19|21|14({15(18(14 (11| 3 925

0 % i 3 4 B0 7 o SR o B) 11%12
9 |22]17]19|22|14|15|18|14|21| 3 |22]25

...And again, remove and replacetheroot node
Remember, though, that the “last” array index ischanged
Repeat until the last becomesfirst, and thearray issorted!

Analysis|

Here's how the algorithm starts:

Heapifying the array: we add each of nodes
y Each node hasto be sifted up, possibly asfar asthe

root
y Sincethebinary treeisperfectly balanced, sifting up a
single nodetakes time

y Sncewedothis times, heapifyingtakes
time, that is, time

Analysis I

Here'stherest of thealgorithm:

Wedothewhileloop times(actually, times),
because weremove oneof the nodeseach time

Removing and replacing theroot takes time

Therefore, thetotal timeis timeshowever long it
takesthe method

Analysis |

To reheap theroot node, we have to follow one path
from theroot to aleaf node (and we might stop before
we reach aleaf)

Thebinary treeis perfectly balanced

Therefore, thispath is long
- And weonlydo operations at each node
— Therefore, reneaping takes times

Sncewereheap insideawhileloop that wedo times,
thetotal timefor thewhileloop is , Or

Analysis IV

Here'sthealgorithm again:

We have seen that heapifying takes time
Thewhileloop takes time

Thetotal timeistherefore

Thisisthesameas time

The BEnd

Sell Sort: Idea

Donald Shell (1959): Exchange items that are far apart!
Original:

5-sort: Sort items with distance 5 element:

Sell Sort: Example

Original:

After 5-sort:

0] 0[-1]43]3[a2]2]1]58]3]65]4

After 3-sort:
2|1 0 1]|-1]13 |1 |4 140| 3 (42|43 |65/(58

After 1-sort:

Sell Sort: Gap Values

Gap: the distance between itemsbeing
sorted.

Aswe progress, the gap decreases. Shell
Sort Isalso called Diminishing Gap Sort.

Shell proposed starting gap of N/ 2,
halving at each step.

There are many ways of choosing the next
gap.

Sell Sort: Analysis

Insertion Shellsort
Sort Shell's Odd Gaps Only Dividing by 2.2
122 11 11 9
483 26 21 23

1936 61 59 54
7950

32560
131911
520000

O(N372)? O(N5/4)? O(N7/6)?

So we have 3 nested loops, but Shell Sort is still better
than Insertion Sort! Why?

Generic Sort

So far we have methodsto sort integers. What about
Srings? Employees? Cookies?
A new method for each class? No!

In order to be sorted, objects should be comparable
(lessthan, equal, greater than).

Solution:

—usean that hasamethod to compare two
objects.

Remember:

Other kinds of sort

v Heap sort. We will discussthisafter tree.
v Postman sort / Radix Sort.
vy etc.

