DATA STRUCTURES USING 'C'

Lecture-11 Data Structures

Different types of Sorting Techniques used in Data Structures

Selection Sort: Idea

- 1. We have two group of items:
 - sorted group, and
 - unsorted group
- 2. Initially, all items are in the unsorted group. The sorted group is empty.
 - We assume that items in the unsorted group unsorted.
 - We have to keep items in the sorted group sorted.

Selection Sort: Cont'd

- Select the "best" (eg. smallest) item from the unsorted group, then put the "best" item at the end of the sorted group.
- 2. Repeat the process until the unsorted group becomes empty.

5 1 3 4 6 2

5	1	3	4	6	2
---	---	---	---	---	---

5 1 3 4	6	2
---------	---	---

5	1 3	4	6	2
---	-----	---	---	---

5	1	3	4	6	2
---	---	---	---	---	---

5	1 3	4	2	6
---	-----	---	---	---

5 1	3	4	2	6
-----	---	---	---	---

5 1	3	4	2	6
-----	---	---	---	---

5	1 3	4	2	6
---	-----	---	---	---

2 1 3 4 5

2	1	3	4	5	6
---	---	---	---	---	---

|--|

2 1 3 4 5 6

2	1	3	4	5	6

2	1	3	4	5	6

2	1	3	4	5	6

2	1	3	4	5	6

DONE!

Selection Sort: Example

Selection Sort: Example

Selection Sort: Example

Selection Sort: Analysis

- Running time:
 - Worst case: O(N²)
 - Best case: O(N²)

Insertion Sort: Idea

Idea: sorting cards.

• 8		5	9	2	6	3
° 5	8		9	2	6	3
° 5	8	9		2	6	3
• 2	5	8	9		6	3
• 2	5	6	8	9		3
° 2	3	5	6	8	9	

Insertion Sort: Idea

- 1. We have two group of items:
 - sorted group, and
 - unsorted group
- 2. Initially, all items in the unsorted group and the sorted group is empty.
 - We assume that items in the unsorted group unsorted.
 - We have to keep items in the sorted group sorted.
- 3. Pick any item from, then insert the item at the right position in the sorted group to maintain sorted property.
- 4. Repeat the process until the unsorted group becomes empty.

Insertion Sort: Example

Insertion Sort: Example

Insertion Sort: Example

Insertion Sort: Analysis

- Running time analysis:
 - Worst case: O(N²)
 - Best case: O(N)

A Lower Bound

- Bubble Sort, Selection Sort, Insertion Sort all have worst case of O(N²).
- Turns out, for any algorithm that exchanges adjacent items, this is the best worst case: Ω(N²)
- In other words, this is a lower bound!

Mergesort (divide-and-conquer)

• Divide array into two halves.

Mergesort (divide-and-conquer)

- Divide array into two halves.
- Recursively sort each half.

Mergesort

Mergesort (divide-and-conquer)

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

