
DATA STRUCTURES USING ‘C’

Data Structures

1. We have two group of items:
– sorted group, and
– unsorted group

2. Initially, all items are in the unsorted group.
The sorted group is empty.
– We assume that items in the unsorted group

unsorted.
– We have to keep items in the sorted group sorted.

1. Select the “best” (eg. smallest) item from the
unsorted group, then put the “best” item at
the end of the sorted group.

2. Repeat the process until the unsorted group
becomes empty.

5 1 3 4 6 2

Comparison

Data Movement

Sorted

5 1 3 4 6 2

Comparison

Data Movement

Sorted

5 1 3 4 6 2

Comparison

Data Movement

Sorted

5 1 3 4 6 2

Comparison

Data Movement

Sorted

5 1 3 4 6 2

Comparison

Data Movement

Sorted

5 1 3 4 6 2

Comparison

Data Movement

Sorted

5 1 3 4 6 2

Comparison

Data Movement

Sorted

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Largest

5 1 3 4 2 6

Comparison

Data Movement

Sorted

5 1 3 4 2 6

Comparison

Data Movement

Sorted

5 1 3 4 2 6

Comparison

Data Movement

Sorted

5 1 3 4 2 6

Comparison

Data Movement

Sorted

5 1 3 4 2 6

Comparison

Data Movement

Sorted

5 1 3 4 2 6

Comparison

Data Movement

Sorted

5 1 3 4 2 6

Comparison

Data Movement

Sorted

5 1 3 4 2 6

Comparison

Data Movement

Sorted

Largest

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Largest

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Largest

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

2 1 3 4 5 6

Comparison

Data Movement

Sorted

Largest

1 2 3 4 5 6

Comparison

Data Movement

Sorted

1 2 3 4 5 6

Comparison

Data Movement

Sorted

DONE!

4240 2 1 3 3 4 0 -1 655843

40 2 1 43 3 4 0 -1 42 65583

40 2 1 43 3 4 0 -1 58 3 6542

40 2 1 43 3 65 0 -1 58 3 42 4

4240 2 1 3 3 4 0 655843-1

42-1 2 1 3 3 4 0 65584340

42-1 2 1 3 3 4 655843400

42-1 2 1 0 3 4 655843403

1

42-1 2 1 3 4 6558434030

42-1 0 3 4 6558434032

1 42-1 0 3 4 6558434032

1 420 3 4 6558434032-1

1 420 3 4 6558434032-1

 Running time:
◦ Worst case: O(N2)
◦ Best case: O(N2)

 Idea: sorting cards.
◦ 8 | 5 9 2 6 3
◦ 5 8 | 9 2 6 3
◦ 5 8 9 | 2 6 3
◦ 2 5 8 9 | 6 3
◦ 2 5 6 8 9 | 3
◦ 2 3 5 6 8 9 |

1. We have two group of items:
– sorted group, and
– unsorted group

2. Initially, all items in the unsorted group and the
sorted group is empty.
– We assume that items in the unsorted group unsorted.
– We have to keep items in the sorted group sorted.

3. Pick any item from, then insert the item at the
right position in the sorted group to maintain
sorted property.

4. Repeat the process until the unsorted group
becomes empty.

40 2 1 43 3 65 0 -1 58 3 42 4

2 40 1 43 3 65 0 -1 58 3 42 4

1 2 40 43 3 65 0 -1 58 3 42 4

40

1 2 3 40 43 65 0 -1 58 3 42 4

1 2 40 43 3 65 0 -1 58 3 42 4

1 2 3 40 43 65 0 -1 58 3 42 4

1 2 3 40 43 65 0 -1 58 3 42 4

1 2 3 40 43 650 -1 58 3 42 4

1 2 3 40 43 650 58 3 42 41 2 3 40 43 650-1

1 2 3 40 43 650 58 3 42 41 2 3 40 43 650-1

1 2 3 40 43 650 58 42 41 2 3 3 43 650-1 5840 43 65

1 2 3 40 43 650 42 41 2 3 3 43 650-1 5840 43 65

1 2 3 40 43 650 421 2 3 3 43 650-1 584 43 6542 5840 43 65

 Running time analysis:
◦ Worst case: O(N2)
◦ Best case: O(N)

 Bubble Sort, Selection Sort, Insertion Sort all
have worst case of O(N2).

 Turns out, for any algorithm that exchanges
adjacent items, this is the best worst case:
Ω(N2)

 In other words, this is a lower bound!

Mergesort (divide-and-conquer)
◦ Divide array into two halves.

A L G O R I T H M S

divideA L G O R I T H M S

Mergesort (divide-and-conquer)
◦ Divide array into two halves.
◦ Recursively sort each half.

sort

A L G O R I T H M S

divideA L G O R I T H M S

A G L O R H I M S T

Mergesort (divide-and-conquer)
◦ Divide array into two halves.
◦ Recursively sort each half.
◦ Merge two halves to make sorted whole.

merge

sort

A L G O R I T H M S

divideA L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

auxiliary array

smallest smallest

A G L O R H I M S T

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

A

auxiliary array

smallest smallest

A G L O R H I M S T

A

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

G

auxiliary array

smallest smallest

A G L O R H I M S T

A G

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

H

auxiliary array

smallest smallest

A G L O R H I M S T

A G H

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

I

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

L

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

M

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

O

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

R

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

S

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R S

Merge.
◦ Keep track of smallest element in each sorted half.
◦ Insert smallest of two elements into auxiliary array.
◦ Repeat until done.

T

