
I CA

II Ca

ASE STUDY

Care Wel
Cardiolog
consulting
provided.
a.Registe
b.Book an
c.Book an

http://tech

ase study A

1. Introdu

In this cas
Internet b

A typical 3

A HTTP S
Microsoft

A HTTP C

A Relation

l Hospital is a
y etc. In ever

g any doctor.
For taking an
r new patient
n appointmen
n appointmen

hforum4u.com

A Java Serv

uction

se study, we s
usiness-to-co

3-tier client/se

Server (or com
Internet Infor

Client, typicall

nal Database

a leading supe
ry department
First time a p

n appointmen
 details
t for a specifi
t for any avai

m/entry.php/15

vlet E-Shop

shall develop
onsumer (B2C

erver web dat

mmonly know
rmation Serve

y a Web Brow

, such as MyS

er specialty h
t doctors are

patient visits th
t patient need

c doctor
lable doctor i

508-Java-Cas

 Case Stud

 an "e-shop"
C) 3-tier client

tabase applic

wn as Web Se
er (IIS), nginx

wser, such as

SQL, Oracle,

ospital in the
available for
he hospital pa
ds to provide

n a departme

se-Study-Hos

dy

based on the
t/server datab

cation consists

erver), such as
, or Google W

s FireFox, Ch

IBM DB2, MS

city. They ha
OP consultat
atient details
OP ID to the

ent

spital-Manage

e Java Servlet
base applicati

s of 5 compon

s Apache HTT
Web Server (G

rome, IE or S

S SQL Serve

ave various de
ion. Patients
will be record
clerk. Write a

ement-System

t Technology.
ion, as illustra

nents:

TP Server, A
GWS).

Safari.

r, MS Access

epartments su
need to take

ded and an O
a program to

m

. This e-shop
ated below.

pache Tomca

s, SAP SyBas

uch as ENT,
appointment
P ID will be

is a typical

at Server,

se.

for

Client-side programs, running inside the browser, which send requests to the server and process server's response.
Client-side programs can be written in many technologies, e.g., HTML form, JavaScript, VBScript, Java Applet,
Flash, ActiveX Control, and others.

Server-side programs, running inside the HTTP server, which process clients' request. The server-side programs
extract the query parameters submitted by the client-side programs and query the database. Server-side programs
can also be written in many ways, e.g., CGI Peal, Java Servlet/JSP/JSF, ASP, PHP, and many others.

The client and server interact with each other by exchanging messages using a protocol called HTTP (HyperText
Transfer Protocol). HTTP is an asymmetric request-response protocol. A client sends a request message to the
server. The server processes the request and returns a response message. In other words, in HTTP, the
client pulls information from the server, instead of serverpushes information to the client. An HTTP server typically
runs over TCP/IP, with a server IP address and on a TCP port number.

A typical sequence of operations for a webapp is as follows:

A client requests and downloads an HTML page containing an HTML form (or other client-side programs).

The client enters information into the form (such as search criteria), and submits these query parameters back to a
server-side program for processing.

The server-side program extracts the query parameters, performs the database query, and returns the query results
back to the requesting client.

The client displays the query results, and repeats the above steps for further request-response exchange.

Since this course is about Java, we shall build our webapp in Java. We shall write our server-side programs in Java
servlets. We shall write our client-side programs in HTML forms and Java Applet.

http://www.ntu.edu.sg/home/ehchua/programming/java/JavaServletCaseStudy.html

III Case Study : The Airport Announcer system

The Savanna Airport Company has decided to computerize its announcements, rather than using an operator.
Announcements come from two sources: airlines and the company itself. Airlines send out announcements as
required regarding check-in, flight delays and so on. The airport is responsible for security messages which tend to
be sent at regular intervals, automatically. We are therefore looking at a system with an initial model design as
in Figure 14.10. The monitor handles the distribution of the messages, via loudspeakers as well as on the TV
screens around the airport. To keep our example simple, we shall use a single monitor, operating as a scrolling line
of text.

Figure 14.10. Model for the Airport Announcer system.

IV Case study using applets

Cellphone applet. Convert the cellphone GUI that you developed in Problem 10.3 into an applet. Add event
handlers so that typing the keys produces a message on the Java console window.

Changing prices. The prices for fruit and vegetables change often. In the place where the Close button used to be
on the Till program, add a button called Reset which will bring up a new window, listing the products and their current
prices, and allow the user to type in new prices for any product that changes. The price change should be effective
immediately after the window has been closed. Put password protection on the use of this window.

Letter value update. Create a separate applet with a password that can be selected by a menu or button from the
Competition HTML page and will enable one of the newspaper employees to change the letter values interactively.

V Case study Using connections and sockets

Listing via HTML. Create a Lister program as an applet, which accepts the name of a file coming in from a
text field added to the applet’s interface. Put the applet in an HTML page and have the HTML give a list of
suggested files on a particular topic that can be fetched.

Chatting clients. The Chatter program (Case Study 10) provides a server only. Using the Ports program
inExample 14.3 as a basis, create a Java program that can be started up on the client side and provide
similar facilities to telnet.

Chatting on the web. Even after Problem 14.2, the user interface to the Chatter is rather basic. Try making
the server into an applet and embody it in an HTML page that provides instructions, displays the output, and
has a separate line for typing in input.

Knock knock! Using the ATM server as a basis (Example 14.4) write a server to play Knock! Knock! The
game goes like this:

Client Server

Knock knock

 Who’s there?

Amos

 Amos who?

Amos Quito.

Use telnet for the client again.

Cellphone messages. Create a system to handle cellphone messages. There is a central server which
keeps track of registered cellphones. Each cellphone is a client which collects a message and a phone
number sends the message to the server, which relays it to the correct phone. This system is very similar to
the chat system except that the messages go out to a specific person rather than to everyone. You can
represent the cellphones using the command line, or you can use a GUI interface

Voicemail. If a phone is switched off, then a message should be stored at the server. As soon as the phone
is switched on, a system message is sent out saying that there are so many stored messages. The user can
then retrieve them one by one. Implement such a system for the cellphone

For database connectivity

Pets database. convert the Veterinary Tags to run on a database. The client applet should allow queries,
and submission to a separate manager thread which handles updates. The manager can presumably then
first checks that the updates are valid before adding them to the database.

House search. An estate agent keeps a record of available houses for sale on a database. When a client
comes along, a list of suitable properties by price range and/or by area can be printed out. Set up such a
system. Start by defining a house object.

Coffee shop database. Nelson would like to investigate whether a database would be better than serialized
linked lists for having a truly permanent record of his inventory which can be queried by clients only, and
updated by himself in his shop. Program a database for the coffee shop and write a report comparing the two
approaches.

Room bookings. Going back to the Room Bookings system posed in the problems of investigates putting
the system on a database. All queries and updates should be available to everyone.

