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Chapter 3 Pulse Modulation
3.1 Introduction
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Figure 3.3 (a) Spectrum of a signal. (b) Spectrum of an undersampled version 
of the signal exhibiting the aliasing phenomenon.
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Figure 3.4 (a) Anti-alias filtered spectrum of an information-bearing signal. (b) 
Spectrum of instantaneously sampled version of the signal, assuming the use of a 
sampling rate greater than the Nyquist rate. (c) Magnitude response of reconstruction 
filter. 7
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3.3 Pulse-Amplitude Modulation
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Pulse Amplitude Modulation –
Natural and Flat-Top Sampling

 The circuit of Figure 11-3 is used to illustrate pulse 
amplitude modulation (PAM). The FET is the 
switch used as a sampling gate.

 When the FET is on, the analog voltage is shorted 
to ground; when off, the FET is essentially open, so 
that the analog signal sample appears at the 
output. 

 Op-amp 1 is a noninverting amplifier that isolates 
the analog input channel from the switching 
function.



Figure 11-3. Pulse amplitude modulator, natural sampling.

Pulse Amplitude Modulation –
Natural and Flat-Top Sampling



 Op-amp 2 is a high input-impedance voltage follower 
capable of driving low-impedance loads (high 
“fanout”).

 The resistor R is used to limit the output current of 
op-amp 1 when the FET is “on” and provides a voltage 
division with rd of the FET. (rd, the drain-to-source 
resistance, is low but not zero)

Pulse Amplitude Modulation –
Natural and Flat-Top Sampling



 The most common technique for sampling voice in 
PCM systems is to a sample-and-hold circuit. 

 As seen in Figure 11-4, the instantaneous amplitude 
of the analog (voice) signal is held as a constant 
charge on a capacitor for the duration of the 
sampling period Ts. 

 This technique is useful for holding the sample 
constant while other processing is taking place, 
but it alters the frequency spectrum and 
introduces an error, called aperture error, resulting 
in an inability to recover exactly the original 
analog signal. 

Pulse Amplitude Modulation –
Natural and Flat-Top Sampling



 The amount of error depends on how mach the 
analog changes during the holding time, called 
aperture time.

 To estimate the maximum voltage error possible, 
determine the maximum slope of the analog signal 
and multiply it by the aperture time DT in Figure 11-
4.

Pulse Amplitude Modulation –
Natural and Flat-Top Sampling



Figure 11-4. Sample-and-hold circuit and flat-top 
sampling. 

Pulse Amplitude Modulation –
Natural and Flat-Top Sampling



Pulse Amplitude Modulation –
Natural and Flat-Top Sampling

Figure 11-5. Flat-top PAM signals. 
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3.4 Other Forms of Pulse Modulation

a. Pulse-duration modulation (PDM)

b. Pulse-position modulation (PPM)

PPM has a similar noise performance as FM.
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Pulse Width and Pulse Position Modulation

 In pulse width modulation (PWM), the width 
of each pulse is made directly proportional to 
the amplitude of the information signal. 

 In pulse position modulation, constant-width 
pulses are used, and the position or time of 
occurrence of each pulse from some reference 
time is made directly proportional to the 
amplitude of the information signal.

 PWM and PPM are compared and contrasted 
to PAM in Figure 11-11. 



Figure 11-11. Analog/pulse modulation signals. 

Pulse Width and Pulse Position Modulation



Pulse Width and Pulse Position Modulation

 Figure 11-12 shows a PWM modulator. This 
circuit is simply a high-gain comparator that is 
switched on and off by the sawtooth waveform 
derived from a very stable-frequency oscillator. 

 Notice that the output will go to +Vcc the instant  
the analog signal exceeds the sawtooth voltage.

 The output will go to -Vcc the instant the analog 
signal is less than the sawtooth voltage. With 
this circuit the average value of both inputs 
should be nearly the same. 

 This is easily achieved with equal value 
resistors to ground. Also the +V and –V values 
should not exceed Vcc.



Figure 11-12. Pulse width modulator.

Pulse Width and Pulse Position Modulation



Pulse Width and Pulse Position Modulation

 A 710-type IC comparator can be used for positive-
only output pulses that are also TTL compatible. 
PWM can also be produced by modulation of 
various voltage-controllable multivibrators. 

 One example is the popular 555 timer IC. Other 
(pulse output) VCOs, like the 566 and that of the 
565 phase-locked loop IC, will produce PWM. 

 This points out the similarity of PWM to 
continuous analog FM. Indeed, PWM has the 
advantages of FM---constant amplitude and good 
noise immunity---and also its disadvantage---large 
bandwidth.  



Demodulation

 Since the width of each pulse in the PWM signal 
shown in Figure 11-13 is directly proportional to 
the amplitude of the modulating voltage.

 The signal can be differentiated as shown in 
Figure 11-13 (to PPM in part a), then the positive 
pulses are used to start a ramp, and the negative 
clock pulses stop and reset the ramp.

 This produces frequency-to-amplitude 
conversion (or equivalently, pulse width-to-
amplitude conversion). 

 The variable-amplitude ramp pulses are then 
time-averaged (integrated) to recover the analog 
signal. 



Figure 11-13. Pulse position 
modulator.

Pulse Width and Pulse Position Modulation



Demodulation

 As illustrated in Figure 11-14, a narrow clock 
pulse sets an RS flip-flop output high, and the 
next PPM pulses resets the output to zero.

 The resulting signal, PWM, has an average 
voltage proportional to the time difference 
between the PPM pulses and the reference 
clock pulses. 

 Time-averaging (integration) of the output 
produces the analog variations. 

 PPM has the same disadvantage as continuous 
analog phase modulation: a coherent clock 
reference signal is necessary for demodulation. 

 The reference pulses can be transmitted along 
with the PPM signal. 



Demodulation

 This is achieved by full-wave rectifying the PPM 
pulses of Figure 11-13a, which has the effect of 
reversing the polarity of the negative (clock-rate) 
pulses. 

 Then an edge-triggered flipflop (J-K or D-type) can 
be used to accomplish the same function as the RS 
flip-flop of Figure 11-14, using the clock input.

 The penalty is: more pulses/second will require 
greater bandwidth, and the pulse width limit the 
pulse deviations for a given pulse period.



Figure 11-14. PPM demodulator. 

Demodulation



Pulse Code Modulation 
(PCM)

 Pulse code modulation (PCM) is produced by 
analog-to-digital conversion process. 

 As in the case of other pulse modulation 
techniques, the rate at which samples are taken 
and encoded must conform to the Nyquist 
sampling rate.

 The sampling rate must be greater than, twice the 
highest frequency in the analog signal, 

fs > 2fA(max)                



3.6 Quantization Process
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Figure 3.10 Two types of quantization: (a) midtread and (b) midrise.
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Quantization Noise

Figure 3.11 Illustration of the quantization process. (Adapted 
from Bennett, 1948, with permission of AT&T.)
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Conditions for Optimality of scalar Quantizers
Let m(t) be a message signal drawn from a stationary process M(t)

-A  m  A

m1= -A
mL+1=A

mk  mk+1 for k=1,2,…., L

The kth partition cell is defined as

Jk: mk< m  mk+1 for k=1,2,…., L

d(m,vk): distortion measure for using vk to represent values inside Jk.
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Figure 3.13 The basic elements of a PCM system.

Pulse Code Modulation
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Quantization (nonuniform quantizer)



Figure 3.14 Compression laws. (a)  -law. (b) A-law.



Encoding



1. Unipolar nonreturn-to-zero (NRZ) Signaling 

2. Polar nonreturn-to-zero(NRZ) Signaling

3. Unipor nonreturn-to-zero (RZ) Signaling 

4. Bipolar nonreturn-to-zero (BRZ) Signaling 

5. Split-phase (Manchester code)

Line codes:



Figure 3.15 Line codes for the electrical representations of binary data. 
(a) Unipolar NRZ signaling. (b) Polar NRZ signaling.
(c) Unipolar RZ signaling. (d) Bipolar RZ signaling. 
(e) Split-phase or Manchester code.





Differential Encoding (encode information in terms of 
signal 

transition; a transition is used to designate Symbol 0)

Regeneration (reamplification, retiming, reshaping  )

Two measure factors: bit error rate (BER) and jitter. 
Decoding and Filtering



3.8 Noise consideration in PCM systems
(Channel noise,  quantization noise)
(will be discussed in Chapter 4)





Time-Division Multiplexing

Synchronization

Figure 3.19 Block diagram of TDM system.



Example 2.2 The T1 System





3.10 Digital Multiplexers



3.11 Virtues, Limitations and Modifications of PCM

Advantages of PCM

1. Robustness to noise and interference

2. Efficient regeneration 

3. Efficient SNR and bandwidth trade-off

4. Uniform format 

5. Ease add and drop

6. Secure   



3.12 Delta Modulation (DM) (Simplicity)
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Figure 3.23 DM system. (a) Transmitter. (b) Receiver.



The modulator consists of a comparator, a quantizer, and an accumulator
The output of the accumulator is
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Two types of quantization errors :
Slope overload distortion and granular noise
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Slope Overload Distortion and Granular Noise

( differentiator )



Delta-Sigma modulation (sigma-delta modulation)
The            modulation which has an integrator can 
relieve the  draw back of delta modulation (differentiator)  

Beneficial effects of using integrator:
1. Pre-emphasize the low-frequency content
2. Increase correlation between adjacent samples 

(reduce the variance of the error signal at the quantizer input )
3. Simplify receiver design

Because the transmitter has an integrator , the receiver 
consists simply of a low-pass filter. 
(The differentiator in the conventional DM receiver is cancelled 
by the integrator )





Figure 3.25 Two equivalent versions of delta-sigma modulation system.



3.13 Linear Prediction (to reduce the sampling 
rate)

Consider a finite-duration impulse response (FIR) 
discrete-time filter which consists of three blocks :
1. Set of p ( p: prediction order) unit-delay elements 

(z-1) 
2. Set of multipliers with coefficients w1,w2,…wp

3. Set of adders (  )
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For convenience, we may rewrite the Wiener-Hopf equations

The filter coefficients are uniquely determined by
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Substituting (3.71) into (3.69)

Differentiating (3.63), we have



Figure 3.27
Block diagram illustrating the linear adaptive prediction process.



3.14 Differential Pulse-Code Modulation (DPCM)
Usually PCM has the sampling rate higher than the Nyquist rate .The 
encode signal contains redundant information. DPCM can efficiently 
remove this redundancy.

Figure 3.28 DPCM system. (a) Transmitter. (b) Receiver.



Input signal to the quantizer is defined by: 
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3.15 Adaptive Differential Pulse-Code Modulation (ADPCM)
Need for coding speech at low bit rates , we have two aims in mind:
1. Remove redundancies from the speech signal as far as possible.
2. Assign the available bits in a perceptually efficient manner.

Figure 3.29 Adaptive quantization with backward estimation (AQB).

Figure 3.30 Adaptive prediction with backward estimation (APB).


