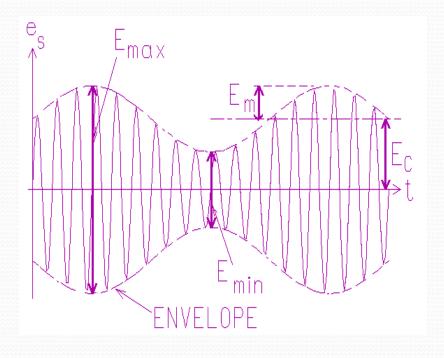

Section-B

Amplitude Modulation


- AM Frequency and Amplitude spectrum
- Modulation Index
- Net Modulation Index for multi-tone modulation
- Single tone Modulation
- Power Contents in AM
- Transmission(modulation) Efficiency
- Generation of AM
- Demodulation of AM

AM Waveform

$$e_c = E_c \sin \omega_c t$$

$$e_m = E_m \sin \omega_m t$$

AM signal: $e_s = (E_c + e_m) \sin \omega_c t$

Amplitude Modulation

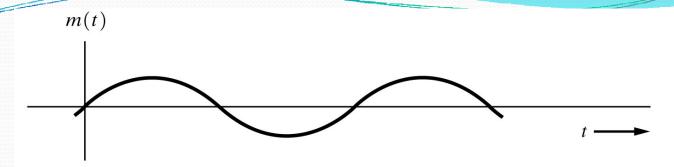
The Complex Envelope of an AM signal is given

by

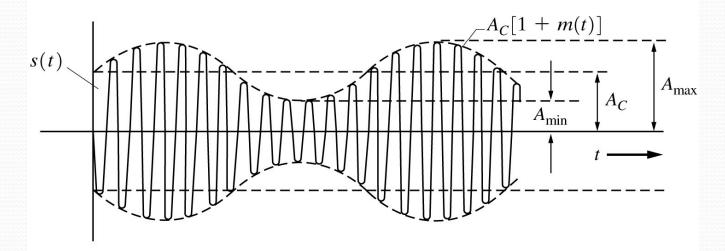
$$g(t) = A_c[1 + m(t)]$$

 A_c indicates the power level of AM and m(t) is the Modulating Signal

➤ Representation of an AM signal is given by


$$s(t) = A_c[1 + m(t)]\cos\omega_c t$$

- $> A_c[1+m(t)]$ In-phase component x(t)
- > If m(t) has a peak positive values of +1 and a peak negative value of -1


AM signal → 100% modulated

> Envelope detection can be used if % modulation is less than 100%.

AM Signal Waveform

(a) Sinusoidal Modulating Wave

(b) Resulting AM Signal

$$A_{\text{max}} = 1.5A_{\text{c}}$$
$$A_{\text{min}} = 0.5 A_{\text{c}}$$

% Positive modulation= 50%

% Negative modulation = 50% Overall Modulation = 50%

AM in Frequency Domain

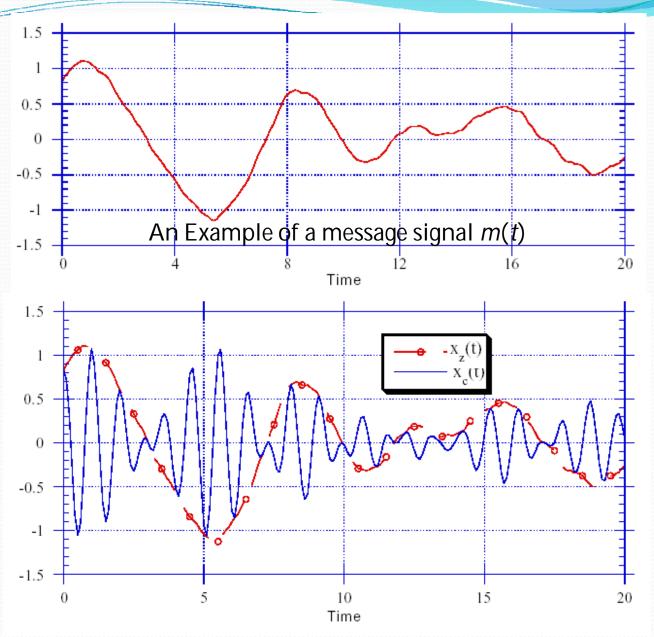
• The expression for the AM signal:

$$e_s = (E_c + e_m) \sin \omega_c t$$

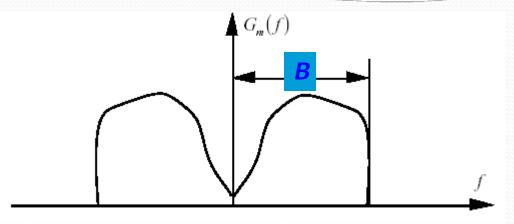
can be expanded to:

$$e_s = E_c \sin \omega_c t + \frac{1}{2} m E_c [\cos (\omega_c - \omega_m) t - \cos (\omega_c + \omega_m) t]$$

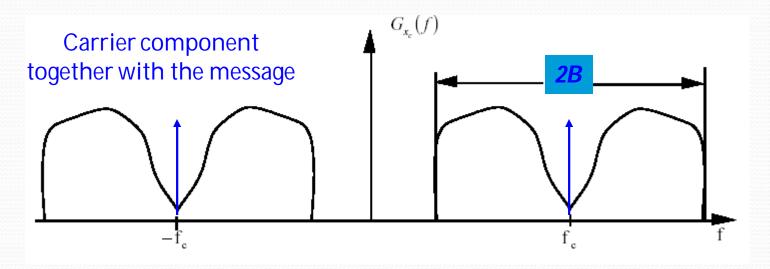
• The expanded expression shows that the AM signal consists of the original carrier, a lower side frequency, $f_{lsf} = f_c - f_m$, and an upper side frequency, $f_{usf} = f_c + f_m$.


Û

AM Spectrum


$$f_{usf} = f_c + f_m$$
; $f_{lsf} = f_c - f_m$; $E_{sf} = mE_c/2$
Bandwidth, $B = 2f_m$

Amplitude Modulation



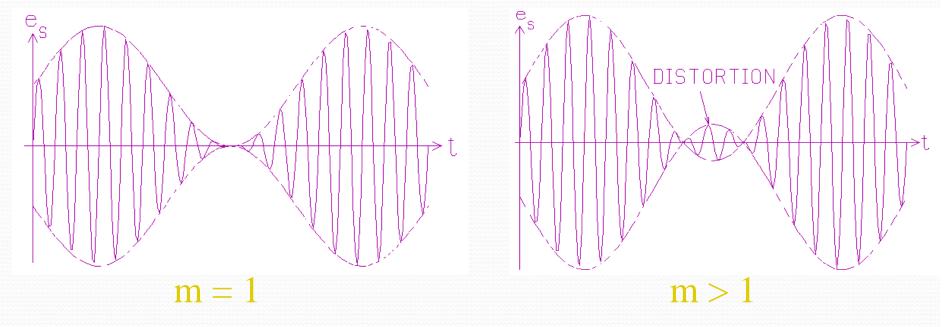
Waveform for Amplitude modulation of the message signal m(t)

Amplitude Modulation

An Example of message energy spectral density.

Energy spectrum of the AM modulated message signal.

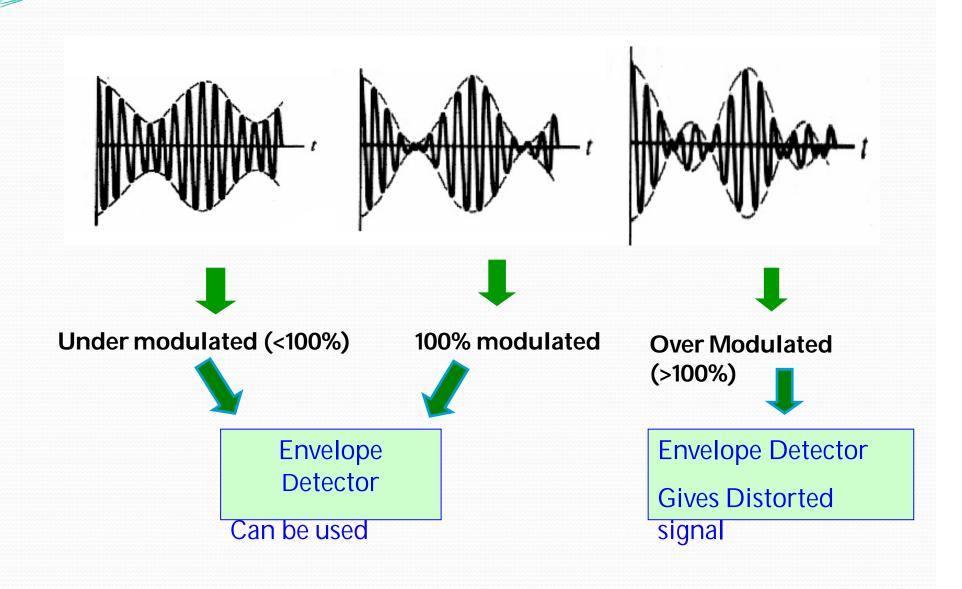
Modulation Index


 The amount of amplitude modulation in a signal is given by its modulation index:

$$m = \frac{E_m}{E_c} or \frac{E_{\text{max}} - E_{\text{min}}}{E_{\text{max}} + E_{\text{min}}}$$

where, $E_{max}=E_c+E_m$; $E_{min}=E_c-E_m$ (all pk values) When $E_m=E_c$, m=1 or 100% modulation.

Over-modulation, i.e. $E_m > E_c$, should be avoided because it will create distortions and splatter.


Effects of Modulation Index

In a practical AM system, it usually contains many frequency components. When this is the case,

$$m_T = \sqrt{m_1^2 + m_2^2 + ... + m_n^2}$$

AM - Percentage Modulation

AM Power

- Total average (i.e. rms) power of the AM signal is: $P_T = P_c + 2P_{sf}$, where
 - P_c = carrier power; and P_{sf} = side-frequency power
- If the signal is across a load resistor, R, then: $P_c = E_c^2/(2R)$; and $P_{sf} = m^2P_c/4$. So,

$$P_T = P_c (1 + \frac{m^2}{2})$$

AM - Normalized Average Power

The **normalized average power** of the AM signal is

$$\langle s^{2}(t)\rangle = \frac{1}{2}\langle |g(t)|^{2}\rangle = \frac{1}{2}A_{c}^{2}\langle [1+m(t)]^{2}\rangle$$
$$= \frac{1}{2}A_{c}^{2}\langle [1+2m(t)+m^{2}(t)]\rangle$$
$$= \frac{1}{2}A_{c}^{2} + A_{c}^{2}\langle m(t)\rangle + \frac{1}{2}A_{c}^{2}\langle m^{2}(t)\rangle$$

If the modulation contains no dc level, the m(t) = 0

The **normalized power** of the AM signal is

$$\langle s^2(t)\rangle = \frac{1}{2}A_c^2 + \frac{1}{2}A_c^2\langle m^2(t)\rangle$$

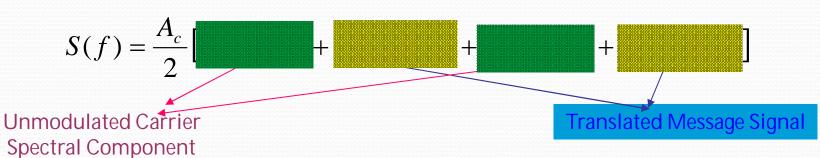
Discrete Carrier Power

Sideband power

AM - Modulation Efficiency

Definition: The Modulation Efficiency is the percentage of the total power of the modulated signal that conveys information.

Only "Sideband Components" – Convey information


Modulation Efficiency:
$$E = \frac{\left\langle m^2(t) \right\rangle}{1 + \left\langle m^2(t) \right\rangle} \times 100$$

Highest efficiency for a 100% AM signal: 50% - square wave modulation

Normalized Peak Envelope Power (PEP) of the AM signal:

$$P_{PEP} = \frac{A_c^2}{2} \{1 + \max[m(t)]\}^2$$

Voltage Spectrum of the AM signal:

