Topic Covered: Fourier Analysis

FOURIER SERIES

- Usually, a signal is described as a function of time .
- There are some amazing advantages if a signal can be expressed in the frequency domain.
- Fourier transform analysis is named after Jean Baptiste Joseph Fourier (1768-1830).

 A Fourier series (FS) is used for representing a continuous-time periodic signal as weighted superposition of sinusoids.

 Periodic Signals A continuous-time signal is said to be *periodic* if there exists a positive constant such that

where is the period of the signal.

$$x(t) = x(t + T_0)$$

 T_0

- T_0 : fundamental Period
- $f_0 = \frac{1}{T_0}$ fundamental frequency
- Example: Periodic and aperiodic signal

After the analysis, we obtain the following information about the signal:

- I. What all frequency components are presenting the signal?
- II. Their amplitude and
- III. The relative phase difference between these frequency components.

All the frequency components are nothing else but sine waves at those frequencies.

• Existence of the Fourier Series $\int_{0}^{T_{0}} |f(t)| dt < \infty$

• Convergence for all t

 $\left|f(t)\right| < \infty \ \forall t$

- Finite number of maxima and minima in one period of f(t)
- These are known as the Dirichlet conditions

Fourier Series

- General representation of a periodic signal
- Fourier series coefficients
- Polar Form of Fourier series

 $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$ $a_0 = \frac{1}{T_0} \int_0^{T_0} f(t) dt$ $a_n = \frac{2}{T_0} \int_0^{T_0} f(t) \cos(n\omega_0 t) dt$ $b_n = \frac{2}{T_0} \int_0^{T_0} f(t) \sin(n\omega_0 t) dt$ $f(t) = c_0 + \sum_{i=1}^{\infty} c_n \cos(n\omega_0 t + \theta_n)$ where $c_0 = a_0, c_n = \sqrt{a_n^2 + b_n^2}$, and $\theta_n = \tan^{-1} \left(\frac{-b_n}{a_n} \right)$

- {x_n} are called the Fourier series coefficients of the signal x(t).
- The quantity $f_0 = \frac{1}{T_0}$ is called the fundamental frequency of the signal x(t)
- The Fourier series expansion can be expressed in terms of angular frequency = $2\pi f_0$ by

$$x_n = \frac{\omega_0}{2\pi} \int_{\alpha}^{\alpha + 2\pi/\omega_0} x(t) e^{-jn\omega_0 t} dt$$

and

$$x(t) = \sum_{n=-\infty}^{\infty} x_n e^{jn\omega_0 t}$$

• Discrete spectrum - We may write $x_n = |x_n| e^{j \ge x_n}$, where $|x_n|$ gives the magnitude of the *n*th harmonic and x_n gives its phase.

is a rectangular pulse. Determine the Fourier series expansion for this signal.

Solution: We first observe that the period of the signal is T_0 and $\pi^{2\pi t}$

 $x_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jn \frac{2\pi t}{T_0}} dt$ $=\frac{1}{T_0}\int_{-\tau/2}^{\tau/2} 1e^{-jn\frac{2\pi t}{T_0}}dt$ $=\frac{1}{T_{0}}\frac{T_{0}}{-jn2\pi}\left|e^{-jn\frac{n\tau}{T_{0}}}-e^{jn\frac{n\tau}{T_{0}}}\right|$ $=\frac{1}{\pi n}\sin\left(\frac{n\pi\tau}{T_0}\right)$ $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$ $=\frac{\tau}{T_0}\operatorname{sinc}\left(\frac{n\tau}{T_0}\right)$

Example #1

- Fundamental period $T_0 = \pi$
- Fundamental frequency $f_0 = 1/T_0 = 1/\pi$ Hz $\omega_0 = 2\pi/T_0 = 2$ rad/s

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(2nt) + b_n \sin(2nt)$$
$$a_0 = \frac{1}{\pi} \int_0^{\pi} e^{-\frac{t}{2}} dt = -\frac{2}{\pi} \left(e^{-\frac{\pi}{2}} - 1 \right) \approx 0.504$$
$$a_n = \frac{2}{\pi} \int_0^{\pi} e^{-\frac{t}{2}} \cos(2nt) dt = 0.504 \left(\frac{2}{1 + 16n^2} \right)$$
$$b_n = \frac{2}{\pi} \int_0^{\pi} e^{-\frac{t}{2}} \sin(2nt) dt = 0.504 \left(\frac{8n}{1 + 16n^2} \right)$$

 a_n and b_n decrease in amplitude as $n \to \infty$.

$$f(t) = 0.504 \left[1 + \sum_{n=1}^{\infty} \frac{2}{1 + 16n^2} \left(\cos(2nt) + 4n\sin(2nt) \right) \right]$$

- Fundamental period $T_0 = 2$
- Fundamental frequency $f_0 = 1/T_0 = 1/2$ Hz $\omega_0 = 2\pi/T_0 = \pi$ rad/s

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(\pi n t) + b_n \sin(\pi n t)$$

$$a_0 = 0 \quad \text{(by inspection of the plot)}$$

$$a_n = 0 \quad \text{(because it is odd symmetric)}$$

$$b_n = \frac{2}{\pi} \int_{-1/2}^{1/2} 2A t \sin(\pi n t) dt + \frac{2}{\pi} \int_{1/2}^{3/2} (2A - 2A t) \sin(\pi n t) dt$$

$$b_n = \begin{cases} 0 & n \text{ is even} \\ \frac{8A}{n^2 \pi^2} & n = 1, 5, 9, 13, \dots \\ -\frac{8A}{n^2 \pi^2} & n = 3, 7, 11, 15, \dots \end{cases}$$

Example #3

- Fundamental period $T_0 = 2\pi$
- Fundamental frequency $f_0 = 1/T_0 = 1/2\pi$ Hz $\omega_0 = 2\pi/T_0 = 1$ rad/s

$$C_{0} = \frac{1}{2}$$

$$C_{n} = \begin{cases} 0 & n \text{ even} \\ \frac{2}{\pi n} & n \text{ odd} \end{cases}$$

$$\theta_{n} = \begin{cases} 0 & \text{for all } n \neq 3,7,11,15,... \\ -\pi & n = 3,7,11,15,... \end{cases}$$

Table 1: Properties of the Continuous-Time Fourier Series

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

Property	Periodic Signal	Fourier Series Coefficients
	$ \begin{cases} x(t) \\ y(t) \end{cases} Periodic with period T and fundamental frequency \omega_0 = 2\pi/T$	a_k b_k
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time-Shifting	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Frequency-Shifting	$e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Conjugation	$x^{*}(t)$	a^*_{-k}
Time Reversal	x(-t)	a_{-k}
Time Scaling	$x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k
Periodic Convolution	$\int_{T} x(\tau)y(t-\tau)d\tau$	$Ta_k b_k$
Multiplication	x(t)y(t)	$\sum_{l=1}^{+\infty} a_l b_{k-l}$
Differentiation	$\frac{dx(t)}{dt}$	$\int_{jk\omega_0 a_k}^{l=-\infty} jk \frac{2\pi}{T} a_k$
Integration	$\int_{-\infty}^{t} x(t)dt $ (finite-valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$

Conjugate Symmetry
for Real Signals
$$x(t)$$
 real $\begin{cases} a_k = a_{-k}^- \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ \exists m\{a_k\} = -\Im m\{a_{-k}\} \\ |a_k| = |a_{-k}| \\ \exists a_k = - \dashv a_{-k} \end{cases}$
Real and Even Sig-
nals a_k real and even

Real and Odd Signals x(t) real and odd

 $\begin{array}{ll} \mbox{Even-Odd Decompo-} & \left\{ \begin{array}{ll} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \mbox{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \mbox{ real}] \end{array} \right. \end{array} \right.$

 a_k purely imaginary and odd

 $\Re e\{a_k\}\ j\Im m\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$