Topic Covered: Fourier Analysis

FOURIER SERIES

- Usually, a signal is described as a function of time .
- There are some amazing advantages if a signal can be expressed in the frequency domain.
- Fourier transform analysis is named after Jean Baptiste Joseph Fourier (1768-1830).
- A Fourier series (FS) is used for representing a continuous-time periodic signal as weighted superposition of sinusoids.
- Periodic Signals A continuous-time signal is said to be periodic if there exists a positive constant such that
where is the period of the signal.

$$
x(t)=x\left(t+T_{0}\right)
$$

$$
T_{0}
$$

T_{0} : fundamental Period

- $f_{0}=\frac{1}{T_{0}}$: fundamental frequency
- Example: Periodic and aperiodic signal

(a)

(b)

After the analysis, we obtain the following information about the signal:

I. What all frequency components are presenting the signal?
II. Their amplitude and
III. The relative phase difference between these frequency components.

All the frequency components are nothing else but sine waves at those frequencies.

A sum of Sines and Cosines

Existence of the Fourier Series

- Existence $\int_{0}^{T_{0}}|f(t)| d t<\infty$
- Convergence for all t $|f(t)|<\infty \forall t$
- Finite number of maxima and minima in one period of $\mathrm{f}(\mathrm{t})$
- These are known as the Dirichlet conditions

Fourier Series

- General representation of a periodic signal
- Fourier series coefficients
- Polar Form of Fourier series

$$
\begin{aligned}
& f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right) \\
& a_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} f(t) d t \\
& a_{n}=\frac{2}{T_{0}} \int_{0}^{T_{0}} f(t) \cos \left(n \omega_{0} t\right) d t \\
& b_{n}=\frac{2}{T_{0}} \int_{0}^{T_{0}} f(t) \sin \left(n \omega_{0} t\right) d t
\end{aligned}
$$

$f(t)=c_{0}+\sum_{n=1}^{\infty} c_{n} \cos \left(n \omega_{0} t+\theta_{n}\right)$
where $c_{0}=a_{0}, c_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}$, and

$$
\theta_{n}=\tan ^{-1}\left(\frac{-b_{n}}{a_{n}}\right)
$$

- $\{\mathrm{xn}\}$ are called the Fourier series coefficients of the signal $\mathrm{x}(\mathrm{t})$.
- The quantity $f_{0}=\frac{1}{T_{0}}$ is called the fundamental frequency of the signal $\mathrm{x}(\mathrm{t})$
- The Fourier series expansion can be expressed in terms of angular frequenoy $=2 \pi f_{0} \quad$ by

$$
x_{n}=\frac{\omega_{0}}{2 \pi} \int_{\alpha}^{\alpha+2 \pi / \omega_{0}} x(t) e^{-j n \omega_{0} t} d t
$$

and

$$
x(t)=\sum_{n=-\infty}^{\infty} x_{n} e^{j n \omega_{0} t}
$$

- Discrete spectrum - We may write $e_{n}=\left|x_{n}\right| e^{j \angle x_{n}} \quad$, where $\left|x_{n}\right|$ gives the magnitude of the nth harmonic and x_{n} gives its phase.

Figure 2.1 The discrete spectrum of $x(t)$.

- Example: Let $\mathrm{x}(\mathrm{t})$ denote the periodic signal depicted in Figure 2.2

Figure 2.2 Periodic signal $x(t)$.

$$
x(t)=\sum_{n=-\infty}^{\infty} \Pi\left(\frac{t-n T_{0}}{\tau}\right), \quad T_{0}>\tau
$$

where

$$
\Pi(t)=\left\{\begin{array}{lc}
1, & |t|<\frac{1}{2} \\
\frac{1}{2}, & |t|=\frac{1}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

is a rectangular pulse. Determine the Fourier series expansion for this signal.

Solution: We first observe that the period of the signal is To and

$$
\begin{aligned}
x_{n} & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j n \frac{2 \pi t}{T_{0}}} d t \\
& =\frac{1}{T_{0}} \int_{-\tau / 2}^{\tau / 2} 1 e^{-j n \frac{2 \pi t}{T_{0}}} d t \\
& =\frac{1}{T_{0}}-j n 2 \pi \\
& \left.=\frac{1}{\pi n} \sin \left(\frac{n \pi \tau}{T_{0}}\right) e^{-j n \frac{n \tau}{T_{0}}}-e^{j n \frac{n \tau}{T_{0}}}\right] \\
& =\frac{\tau}{T_{0}} \operatorname{sinc}\left(\frac{n \tau}{T_{0}}\right) \quad \operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
\end{aligned}
$$

Therefore, we have

$$
x(t)=\sum_{n=-\infty}^{\infty} \frac{\tau}{T_{0}} \operatorname{sinc}\left(\frac{n \tau}{T_{0}}\right) e^{j n \frac{2 \pi t}{T_{0}}}
$$

Figure 2.3 The discrete spectrum of the rectangular pulse train.

Example \#1

- Fundamental period

$$
\mathrm{T}_{0}=\pi
$$

$$
\begin{aligned}
& f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (2 n t)+b_{n} \sin (2 n t) \\
& a_{0}=\frac{1}{\pi} \int_{0}^{\pi} e^{-\frac{t}{2}} d t=-\frac{2}{\pi}\left(e^{-\frac{\pi}{2}}-1\right) \approx 0.504 \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} e^{-\frac{t}{2}} \cos (2 n t) d t=0.504\left(\frac{2}{1+16 n^{2}}\right) \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} e^{-\frac{t}{2}} \sin (2 n t) d t=0.504\left(\frac{8 n}{1+16 n^{2}}\right)
\end{aligned}
$$

- Fundamental frequency
$\mathrm{f}_{0}=1 \mathrm{~T}_{0}=1 / \pi \mathrm{Hz}$
a_{n} and b_{n} decrease in amplitude as $n \rightarrow \infty$.
$\omega_{0}=2 \pi / \mathrm{T}_{0}=2 \mathrm{rad} / \mathrm{s}$

$$
f(t)=0.504\left[1+\sum_{n=1}^{\infty} \frac{2}{1+16 n^{2}}(\cos (2 n t)+4 n \sin (2 n t))\right]
$$

Example \#2

- Fundamental period
$\mathrm{T}_{0}=2$
- Fundamental frequency
$\mathrm{f}_{0}=1 / \mathrm{T}_{0}=1 / 2 \mathrm{~Hz}$
$\omega_{0}=2 \pi / \mathrm{T}_{0}=\pi \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (\pi n t)+b_{n} \sin (\pi n t) \\
& a_{0}=0 \quad \text { (by inspection of the plot) } \\
& a_{n}=0 \quad \text { (because it is odd symmetric) } \\
& b_{n}=\frac{2}{\pi} \int_{-1 / 2}^{1 / 2} 2 A t \sin (\pi n t) d t+ \\
& \frac{2}{\pi} \int_{1 / 2}^{3 / 2}(2 A-2 A t) \sin (\pi n t) d t \\
& b_{n}= \\
& \begin{array}{ll}
\frac{8 A}{n^{2} \pi^{2}} & n=1,5,9,13, \ldots \\
-\frac{8 A}{n^{2} \pi^{2}} & n=3,7,11,15, \ldots
\end{array}
\end{aligned}
$$

Example \#3

- Fundamental period
$C_{0}=\frac{1}{2}$
$\mathrm{T}_{0}=2 \pi$
- Fundamental frequency
$\mathrm{f}_{0}=\downarrow \mathrm{T}_{0}=\downarrow / 2 \pi \mathrm{~Hz}$
$\omega_{0}=2 \pi / \mathrm{T}_{0}=1 \mathrm{rad} / \mathrm{s}$
$C_{n}=\left\{\begin{array}{cc}0 & n \text { even } \\ \frac{2}{\pi n} & n \text { odd }\end{array}\right.$
$\theta_{n}=\left\{\begin{array}{cc}0 & \text { for all } n \neq 3,7,11,15, \ldots \\ -\pi & n=3,7,11,15, \ldots\end{array}\right.$

Table 1: Properties of the Continuous-Time Fourier Series

$$
\begin{gathered}
x(t)=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k=0,0 t}=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k(2 \pi / T) t} \\
a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega t} d t=\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t
\end{gathered}
$$

Property

Periodic Signal
Fourier Series Coefficients
\(\left.\begin{array}{l}x(t)

y(t)\end{array}\right\}\)\begin{tabular}{l}
Periodic with period T and

fundamental frequency $\omega_{0}=2 \pi / T$

\quad

a_{k}

b_{k}
\end{tabular}

Linearity
Time-Shifting
Frequency-Shifting
Conjugation
Time Reversal
Time Scaling
Periodic Convolution
$A x(t)+B y(t)$
$x\left(t-t_{0}\right)$
$e^{j M \omega 0 t}=e^{j M(2 \pi / T) t} x(t)$
$x^{*}(t)$
$x(-t)$
$x(a t), \alpha>0($ periodic with period $T / \alpha)$
$\int_{T} x(\tau) y(t-\tau) d \tau$
Multiplication
Differentiation
Integration
$x(t) y(t)$
$\frac{d x(t)}{d t}$
$\int_{-\infty}^{t} x(t) d t \stackrel{\text { (finite-valued and }}{\left.\text { periodic only if } a_{0}=0\right)}$
$A a_{k}+B b_{k}$
$a_{k} e^{-j k u t_{0}}=a_{k} e^{-j k(2 \pi / T) t_{0}}$
a_{k-M}
a_{-k}^{W}
a_{-k}
a_{k}
$T a_{k} b_{k}$
$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
$j h \omega \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{k}$

Conjugate Symmetry for Real Signals

$$
\left\{\begin{array}{l}
a_{k}=a_{-k} \\
\Re e\left\{a_{k}\right\}=\Re e\left\{a_{-k}\right\} \\
\Im m\left\{a_{k}\right\}=-\Im m\left\{a_{-k}\right\} \\
\left|a_{k}\right|=\left|a_{-k}\right| \\
\Varangle a_{k}=-\Varangle a_{-k}
\end{array}\right.
$$

a_{k} real and even
a_{k} purely imaginary and odd
Re $\left\{a_{k}\right\}$
$j \bigcirc m\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

