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DefinitionsDefinitions

Asynchronous circuits: within large synchronous systems, it is often 
desirable to allow certain subsystems to operate asynchronously 
to reduce delay and power consumption

Total state: combination of signals that appear at the primary input and 
delay outputs

Input state: combination of input signals 
x1, x2, …, xl

Secondary or internal state: combination 
of signals at the delay outputs y1, y2, …, yk

Secondary or internal variables: y1, y2, …, yk

Excitation variables: Y1, Y2, …, Yk
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Modes of OperationModes of Operation
Stable state: for a given input state, the circuit is said to be in a stable state

if and only if yi = Yi for i = 1, 2, …, k
• In response to a change in the input state: the combinational logic 

produces a new set of values for the excitation variables, entering an 
unstable state

• When the secondary variables assume their new values (when y’s 
become equal to the corresponding Y’s): the circuit enters its next stable 
state
– Thus, a transition from one stable state to another occurs only in 

response to a change in the input state

Fundamental mode: when a change in input values has occurred, no other 
change in any input value occurs until the circuit enters a stable 
state

• Single-input change (SIC) fundamental mode: a single input value is 
allowed to change at a time

• Multiple-input change (MIC) fundamental mode: multiple input values can 
change at a time
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HazardsHazards
Two type of hazards (glitches): logic and function

• Logic hazards: caused by noninstantaneous changes in circuit signals
• Function hazards: inherent in the functional specification

Hazards pose a fundamental problem: a glitch may be misunderstood by 
another part of the circuit as a valid transition and cause incorrect 
behavior
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Design of SIC HazardDesign of SIC Hazard--free Circuitsfree Circuits
Example: T(x,y,z) =    (2,3,5,7)

• Static-1 logic hazard (SIC) 

Adjacent combinations: differ in the value of a single variable
• E.g., x’yz and xyz

SIC static logic hazard: transition between a pair of adjacent input 
combinations, which correspond to identical output values, that may 
generate a momentary spurious output value

• Occurs when no cube in the K-map contains both combinations
– Solution: cover both combinations with a cube
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Transition/Required CubesTransition/Required Cubes

Transition cube [m1,m2]: set of all minterms that can be reached from 
minterm m1 and ending at minterm m2

Example: Transition cube [010,100] contains: 000, 010, 100, 110

Required cube: transition cube that must be included in some product of 
the sum-of-products realization in order to get rid of the static-1 
logic hazard

Example: Required cube is [011,111]
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StaticStatic--0/Dynamic Hazard0/Dynamic Hazard

Since in the sum-of-products realization of a function: no cube for any 
product term can contain either of the two input combinations 
involved in a 0->0 output transition, a static-0 logic hazard can 
only occur if a product term has both xi and xi’ as input literals

• Since there is no need to include such products: such hazards can be 
trivially avoided

During a 0->1 output transition: if the 0 may change to 1 and then 0 and 
finally stabilize at 1, then the sum-of-products realization is said to 
have a dynamic 0->1 logic hazard

• Dynamic 1->0 logic hazard is similarly defined

Based on above reasoning: a dynamic 0->1 and 1->0 logic hazard is also 
trivially avoidable in the SIC scenario
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Design of MIC HazardDesign of MIC Hazard--free Circuitsfree Circuits

MIC scenario: several inputs change values monotonically, i.e., at most 
once

• If in this process, the function changes values more than once: the 
transition is said to have a function hazard

Example: Function hazard: dotted arrow; static-1 logic hazard: solid arrow
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Getting Rid of the StaticGetting Rid of the Static--1 Logic Hazard1 Logic Hazard

Example (contd.): cover the solid arrow with a cube to get rid of the static-1 
logic hazard

Avoiding a static-0 logic hazard is trivial: just as in the SIC case
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MIC Dynamic HazardsMIC Dynamic Hazards

Example: solid arrow

Necessary condition for the dynamic transition to be hazard-free
• Make sure each of its 1->1 subtransitions is also hazard-free: ensured by 

including these subtransitions in some product of the sum-of-products 
realization

• Subtransitions: [1110,1111], [1110,0110] – called required cubes of the 
dynamic transition
– Necessary condition met in this example for these required cubes
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Getting Rid of the Dynamic HazardGetting Rid of the Dynamic Hazard

Ensure that no AND gate turns on during the MIC transition
• G1 temporarily turns on because product wz intersects the dynamic 

transition 1110 -> 0111: called illegal intersection
• Dynamic transition called a privileged cube
• During this transition: inputs could be momentarily at 1111, which is a 

minterm of wz
• Disallow illegal intersections of privileged cubes: reduce wz to wy’z
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Eliminating Hazards for an MIC TransitionEliminating Hazards for an MIC Transition

1->1 MIC transition: must be completely covered by a product term

0->0 MIC transition: does not lead to a hazard

1->0 (0->1) MIC transition: ensure that every product term that intersects 
the MIC transition also contains its starting (end) point

To obtain a hazard-free sum-of-products implementation H of function f,  
ensure:

• Each required cube is contained in some implicant of H
• No implicant of H illegally intersects any specified dynamic transition

– Such an implicant is called a dynamic-hazard-free implicant
(dhf-implicant)

– A dhf-prime implicant is a dhf-implicant not contained in any other dhf-
implicant

• This problem requires that we only make use of dhf-prime implicants while 
covering every required cube in sum-of-products minimization
– Similar to Quine-McCluskey minimization 
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Deriving a HazardDeriving a Hazard--free Sumfree Sum--ofof--productsproducts

Example: 

Hazard-free sum-of-products:
w + yz + x’y + xy’z
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HazardHazard--nonnon--increasing Logic increasing Logic 
TransformationsTransformations

Hazard-non-increasing logic transformations: used to derived hazard-free 
multi-level realization from hazard-free two-level realization

• If the initial circuit is hazard-free: so is the final multi-level circuit
• Associative law and its dual: (x + y) + z x + (y + z); (xy)z x(yz)
• De Morgan’s theorem and its dual: (x + y)’  x’y’; (xy)’  x’ + y’
• Distributive law: xy + xz => x(y + z)
• Absorption law: x + xy => x
• x + x’y => x + y law
• Insertion of inverters at primary inputs and circuit output

Example: AND-OR realization free of dynamic hazard for 1110 -> 0111
• So is the multi-level realization: x’y + wx + yz’ + wy’z + wy = (x’ + z’ + w)y 

+ wx + wy’z
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Synthesis of SIC FundamentalSynthesis of SIC Fundamental--mode mode 
CircuitsCircuits

Flow table: analogous to the state table

Example: Consider a sequential circuit with two inputs x1 and x2 and one 
output z.  The initial input state is x1 = x2 = 0.  The output value is 
to be 1 if and only if the input state is x1 = x2 = 1 and the 
preceding input state is x1 = 0, x2 = 1

Input-output sequences

Partial flow table Primitive flow table
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Reduction of Flow TablesReduction of Flow Tables

Reduction of primitive flow table has two functions:
• Elimination of redundant stable states
• Merging those stable states which are distinguishable by input states

Example: Rewrite primitive flow table like a state table

Merger graph
Maximal compatibles: {(123), (145)}

Reduced flow tables
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Specifying the Output SymbolsSpecifying the Output Symbols

Assignment of output values to the unstable states in the reduced flow 
table

• When the circuit is to go from one stable state to another stable state 
associated with the same output value: assign the same output value to 
the unstable state en route to avoid a momentary opposite value

• When the state changes from one stable state with a given output value to 
another stable state with a different output value: the transition may be 
associated with either of these output values
– When the relative timing of the output value change is of no 

importance: choose the output value so as to minimize logic
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Excitation and Output TablesExcitation and Output Tables

Example: Reduced flow table                       Excitation and output table

Y = x1x2’ + x1y
z = x1x2y’
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Synthesis ProcedureSynthesis Procedure

Synthesis procedure for SIC fundamental-mode asynchronous circuits:
1. Construct a primitive flow table from the verbal description: specify only 

those output values that are associated with stable states
2. Obtain a minimum-row reduced flow table: use either the merger graph or 

merger table for this purpose
3. Assign secondary variables to the rows of the reduced flow table and 

construct excitation and output tables: specify output values associated 
with unstable states according to design requirements

4. Derive excitation and output functions, and the corresponding hazard-free 
circuit
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Synthesis ExampleSynthesis Example

Example: Design an asynchronous sequential circuit with two inputs, x1
and x2, and two outputs, G and R, as follows.  

• Initially, both input values and both output values are 0 
• Whenever G = 0 and either x1 or x2 becomes 1, G becomes 1
• When the second input becomes 1, R becomes 1
• The first input value that changes from 1 to 0 turns G equal to 0  
• R becomes 0 when G is 0 and either input value changes from 1 to 0
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Synthesis Example (Contd.)Synthesis Example (Contd.)

Merger graph           Reduced flow table           Excitation and output table

Y = (x1 + x2)y + x1x2

G = (x1 + x2)y’ + x1x2

R = y + x1x2
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Races and CyclesRaces and Cycles

Assignment of the secondary variable values to the rows of the reduced flow 
table should be such that: the circuit will operate correctly even if 
different delays are associated with the secondary elements

Race: where a change of more than one secondary variable is required
• Noncritical race: the final state does not depend on the order in which the 

secondary variables change
• Critical race: the final state reached depends on the order in which the 

secondary variables change – must always be avoided 
• Races can sometimes be avoided by directing the circuit through 

intermediate unstable states
– Cycle: circuit goes through a unique sequence of unstable states

Illustration of races and cycles Valid assignment that eliminates critical races
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Methods of Secondary AssignmentMethods of Secondary Assignment

Valid state assignment: avoids critical races and undesired cycles

Adjacent states: states whose assignments differ in only one variable

Example:    Flow table                                          Transition diagram

Column 00: Row b must be adjacent to row a
Column 01: Rows a and b must be adjacent to row c
Column 11: Row c must be adjacent to row b
Column 10: Row c must be adjacent to row a
If noncritical races are permitted: column 01 requirement may be eliminated
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Secondary Assignment (Contd.)Secondary Assignment (Contd.)

Avoiding all races: not possible when the transition diagram is a triangle
• Use augmented flow table

Example: Augmentation of the flow table may require an increase in the 
number of secondary variables

Flow table Transition diagram Race-free flow table
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Synthesis of BurstSynthesis of Burst--mode Circuitsmode Circuits

MIC fundamental-mode machines: several inputs change in a narrow time 
interval and no further inputs change values until the machine has 
stabilized

• Narrow time interval: still quite restrictive
Burst-mode machines: also allow several inputs to change values 

concurrently
• However, all the changes need not occur in a narrow time interval
• They can monotonically change in any order at any time within a given 

input burst and respond with a set of output value changes, called the 
output burst

Burst-mode specification: initial values of inputs and outputs can be 
specified or just assumed to have a default value of 0
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BurstBurst--mode Specification Restrictionsmode Specification Restrictions

Restrictions on burst-mode specifications:
• Non-empty input bursts: if no input undergoes a transition, the machine 

remains in its current state
• Maximal set property: no input burst on an outgoing arc from any state 

must be a subset of an input burst on another outgoing arc from the same 
state

• Unique entry point: each state should have a unique set of input and 
output values through which it is entered

Example: Assume in starting state A, x1x2 = 00 and z1z2 = 00
• B: 11/11
• C: 01/10
• D: 10/01
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Flow TableFlow Table

Example (contd.): Specification                            Flow table

Complete state: the state the machine goes to and corresponding output 
values

Flow table for a burst-mode specification does not have any function 
hazards: since the complete state does not change until the full 
input burst has arrived

• It is always possible to obtain a hazard-free sum-of-products realization H
for each secondary variable and output: since for each such variable, the 
required cube can be included in some product of H and no product of H
illegally intersects any privileged cube because all transitions in any row of 
the flow table have the same complete start state which will be included in 
the required cubes for these transitions
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Synthesis ExampleSynthesis Example

Example: Specification                  Transition diagram      State assignment

Excitation and output table
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Synthesis Example (Contd.)Synthesis Example (Contd.)

Y1,Y2:
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Synthesis Example (Contd.)Synthesis Example (Contd.)

z1,z2:
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Synthesis Example (Contd.)Synthesis Example (Contd.)

Synthesized circuit: 
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