Synchronous Counter

Synchronous (Parallel) Counters

- Synchronous (parallel) counters: the flip-flops are clocked at the same time by a common clock pulse.
- We can design these counters using the sequential logic design process (covered in Lecture \#12).
- Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

Present state		Next state		Flip-flop inputs	
\boldsymbol{A}_{1}	A_{0}	$\mathrm{A}_{1}{ }^{+}$	$\mathrm{A}_{0}{ }^{+}$	TA	$T A_{0}$
0	0	0	1	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	0	1	1

Synchronous (Parallel) Counters

- Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

Present state		Next state		Flip-flop inputs		$T A_{1}=A_{0}$
\boldsymbol{A}_{1}	A_{0}	A1 $^{+}$	$\mathrm{A}_{0}{ }^{+}$	TA ${ }_{1}$	$T A_{0}$	
0	0	0	1	0	1	
0	1	1	0	1	1	$T A_{0}=1$
1	0	1	1	0	1	
1	1	0	0	1	1	

Synchronous (Parallel) Counters

- Example: 3-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J, K inputs).

Synchronous (Parallel) Counters

- Example: 3-bit synchronous binary counter (cont’d). $T A_{2}=A_{1} \cdot A_{0} \quad T A_{1}=A_{0} T A_{0}=1$

Synchronous (Parallel) Counters

- Note that in a binary counter, the $\mathrm{n}^{\text {th }}$ bit (shown underlined) is always complemented whenever

$$
\begin{array}{ll}
& \underline{011 \ldots . .11} \rightarrow \\
\text { or } 100 \ldots . .00 \\
\underline{1} 11 \ldots . .11 & \rightarrow \underline{0} 00 \ldots 00
\end{array}
$$

- Hence, X_{n} is complemented whenever

$$
X_{n-1} X_{n-2} \ldots X_{1} X_{0}=11 \ldots 11
$$

- As a result, if T flip-flops are used, then

$$
T X_{n}=X_{n-1} \cdot X_{n-2} \cdot \ldots \cdot X_{1} \cdot X_{0}
$$

Synchronous (Parallel) Counters

- Example: 4-bit synchronous binary counter.

$$
\begin{aligned}
& T A_{3}=A_{2} \cdot A_{1} \cdot A_{0} \\
& T A_{2}=A_{1} \cdot A_{0} \\
& T A_{1}=A_{0} \\
& T A_{0}=1
\end{aligned}
$$

Synchronous (Parallel) Counters

- Example: Synchronous decade/BCD counter.

Clock pulse	\boldsymbol{Q}_{3}	$\boldsymbol{Q}_{\mathbf{2}}$	$\boldsymbol{Q}_{\mathbf{1}}$	$\boldsymbol{Q}_{\mathbf{0}}$		
Initially	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$		
1	0	0	0	1		
2	0	0	1	0	\quad	
:---						
2						

Synchronous (Parallel) Counters

- Example: Synchronous decade/BCD counter (cont d).

$$
\begin{aligned}
& T_{0}=1 \\
& T_{1}=Q_{3} \cdot Q_{0} \\
& T_{2}=Q_{1} \cdot Q_{0} \\
& T_{3}=Q_{2} \cdot Q_{1} \cdot Q_{0}+Q_{3} \cdot Q_{0}
\end{aligned}
$$

Up/Down Synchronous Counters

- Up/down synchronous counter: a bidirectional counter that is capable of counting either up or down.
- An input (control) line Up/Down (or simply Up) specifies the direction of counting.
*Up/Down $=1 \rightarrow$ Count upward
*Up/Down $=0 \rightarrow$ Count downward

Up/Down Synchronous Counters

- Example: A 3-bit up/down synchronous binary counter.

Clock pulse	$U p$	Q_{2}	Q_{1}	Q_{0}	Down
0	C	0	0	0	7
1		0	0	1	5
2		0	1	0	7
3		0	1	1	7
4		1	0	0	7
5		1	0	1	7
6		1	1	0	7
7		1	1	1	7

$$
\begin{aligned}
& T Q_{0}=1 \\
& T Q_{1}=\left(Q_{0} \cdot U p\right)+\left(Q_{0}^{\prime} \cdot U p^{\prime}\right) \\
& T Q_{2}=\left(Q_{0} \cdot Q_{1} \cdot U p\right)+\left(Q_{0}^{\prime} \cdot Q_{1}^{\prime} \cdot U p^{\prime}\right)
\end{aligned}
$$

Up counter	Down counter
$T Q_{0}=1$	$T Q_{0}=1$
$T Q_{1}=Q_{0}$	$T Q_{1}=Q_{0}^{\prime}$
$T Q_{2}=Q_{0} \cdot Q_{1}$	$T Q_{2}=Q_{0}^{\prime} \cdot Q_{1}^{\prime}$

Up/Down Synchronous Counters

- Example: A 3-bit up/down synchronous binary counter (cont'd) ${ }_{T Q_{0}}=1$

$$
\begin{aligned}
& T Q_{1}=\left(Q_{0} \cdot U p\right)+\left(Q_{0} \cdot U p^{\prime}\right) \\
& T Q_{2}=\left(Q_{0} \cdot Q_{1} \cdot U p\right)+\left(Q_{0} \cdot Q_{1} \cdot U p^{\prime}\right)
\end{aligned}
$$

Designing Synchronous Counters

- Covered in Lecture \#12.
- Example: A 3-bit Gray code counter (using JK flip-flops).

Present state			Next state			Flip-flop inputs					
Q_{2}	Q_{1}	Q_{0}	$Q_{2}{ }^{+}$	$Q_{1}{ }^{+}$	$Q_{0}{ }^{+}$	$J Q_{2}$	$K Q_{2}$	$J Q_{1}$	$K Q_{1}$	$J Q_{0}$	$K Q_{0}$
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	1	0	1	X	X	0	0	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0	0	0	0	X	1	0	X	0	X
1	0	1	1	0	0	X	0	0	X	X	,
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	1	0	1	X	0	X	,	X	0

Designing Synchronous Counters

- 3-bit Gray code counter: flip-flop inputs.

$\mathrm{Q}_{2} \begin{gathered} \\ \mathrm{Q}_{1} \mathrm{Q}_{0} \\ \\ 000\end{gathered}$					$\mathbf{Q}_{2} \begin{gathered} Q_{1} \mathbf{Q}_{0} \\ 00 \\ 01,11 \quad 10 \end{gathered}$				$\begin{gathered} \mathbf{Q}_{1} \mathbf{Q}_{0} \\ \mathbf{Q}_{2} \quad \begin{array}{l} 00 \quad 01,11 \end{array} \end{gathered}$			
				$\begin{aligned} & 10 \\ & \hline 1 \end{aligned}$			1 X	X	01	1 x 	x	
1	X	X	X	x	1		x	x	1	X	X	1
$J Q_{2}=Q_{1} \cdot Q_{0}{ }^{\prime}$					$J Q_{1}=Q_{2}{ }^{\prime} \cdot Q_{0}$				$\begin{aligned} J Q_{0} & =Q_{2} \cdot Q_{1}+Q_{2}^{\prime} \cdot Q_{1}{ }^{\prime} \\ & =\left(Q_{2} \oplus Q_{1}\right)^{\prime} \end{aligned}$			
$Q_{1} Q_{1} Q_{0}$									$Q_{2} \mathbf{Q}_{1} \mathbf{Q}_{0}$			
$\mathbf{Q}_{2} \quad 00000111.10$					$\begin{array}{r\|r\|r\|r\|r} \mathbf{Q}_{2} & \mathbf{0 0} & 01 & 11 & 10 \\ 0 & \mathrm{x} & \mathrm{x} & & \\ & \end{array}$							
	x	X	x	X						x	1	X
	1				1	X	X 1			X 1 X 1		x
$K Q_{2}=Q_{1} \cdot{ }^{\prime} Q_{0}{ }^{\prime}$					$K Q_{1}=Q_{2} \cdot Q_{0}$				$\begin{aligned} K Q_{0}= & Q_{2} \cdot Q_{1}{ }^{\prime}+Q_{2}^{\prime} \cdot Q_{1} \\ & =Q_{2} \oplus Q_{1} \end{aligned}$			

Designing Synchronous Counters

- 3-bit Gray code counter: logic diagram.

$$
\begin{array}{lll}
J Q_{2}=Q_{1} \cdot Q_{0}{ }^{\prime} & J Q_{1}=Q_{2}^{\prime} \cdot Q_{0} & J Q_{0}=\left(Q_{2} \oplus Q_{1}\right)^{\prime} \\
K Q_{2}=Q_{1}^{\prime} \cdot Q_{0}^{\prime} & K Q_{1}=Q_{2} \cdot Q_{0} & K Q_{0}=Q_{2} \oplus Q_{1}
\end{array}
$$

Decoding A Counter

- Decoding a counter involves determining which state in the sequence the counter is in.
- Differentiate between active-HIGH and active-LOW decoding.
- Active-HIGH decoding: output HIGH if the counter is in the state concerned.
- Active-LOW decoding: output LOW if the counter is in the state concerned.

Decoding A Counter

- Example: M OD-8 ripple counter (activeHIGH decoding).

Decoding A Counter

- Example: To detect that a M OD-8 counter

HIGH only on count of $A B C=000$ or $A B C=001$

- Example: To detect that a MOD-8 counter is in the odd states (states $1,3,5$ or 7), simply use C.

HIGH only on count of odd states

Counters with Parallel Load

- Counters could be augmented with parallel load capability for the following purposes:
*To start at a different state
*To count a different sequence
*As more sophisticated register with increment/decrement functionality.

Counters with Parallel Load

- Different ways of getting a M OD-6 counter:

(a) Binary states $0,1,2,3,4,5$.

(c) Binary states $10,11,12,13,14,15$.

Inputs have no effect
(b) Binary states $0,1,2,3,4,5$.

(d) Binary states 3,4,5,6,7,8.

Counters with Parallel Load

- 4-bit counter with parallel

cleal	GR	Load	Count	Function
0	X	X	X	Clear to 0
1	X	0	0	No change
1	\uparrow	1	X	Load inputs
1	\uparrow	0	1	Next state

Introduction: Registers

- An n-bit register has a group of n flip-flops and some logic gates and is capable of storing n bits of information.
- The flip-flops store the information while the gates control when and how new information is transferred into the register.
- Some functions of register:
* retrieve data from register
*store/load new data into register (serial or parallel)
$*$ shift the data within register (left or right)

Simple Registers

- No external gates.
- Example: A 4-bit register. A new 4-bit data is loaded every clock cycle.

Registers With Parallel Load

- Instead of loading the register at every clock pulse, we may want to control when to load.
- Loading a register: transfer new information into the register. Requires a load control input.
- Parallel loading: all bits are loaded simultaneously.

Registers With Parallel Louad

Using Registers to implement

 Sequential Circuits- A sequential circuit may consist of a register (memoryet. and ande combinational circuit.

- The external inputs and present states of the register determine the next states of the register and the external outputs, through the combinational circuit.
- The combinational circuit may be implemented by any of the methods covered in MSI components and Programmable Logic Devices.

Using Registers to implement

 - Example 1 :

Using Registers to implement Sequential Circuits

- Example 2: Repeat example 1, but use a ROM .

Address			Outputs		
1	2	3	1	2	3
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	0	1
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	0	0	1

ROM truth table

Shift Registers

- Another function of a register, besides storage, is to provide for data movements.
- Each stage (flip-flop) in a shift register represents one bit of storage, and the shifting capability of a register permits the movement of data from stage to stage within the register, or into or out of the register upon application of clock pulses.

Shift Registers

- Basic data movement in shift registers (four bits are used for illustration).

(a) Serial in/shift right/serial out
(b) Serial in/shift left/serial out

(c) Parallel in/serial out

(f) Rotate right

(d) Serial in/parallel out

(g) Rotate left

(e) Parallel in / parallel out

Serial In/Serial Out Shift Registers

- Accepts data serially - one bit at a time and also produces output serially.

Serial In/Serial Out Shift Registers

- Application: Serial transfer of data from one register to another.

Serial In/Serial Out Shift Registers
 - Serial-transfer example.

Timing Pulse	Shift register A				Shift register B				Serial output of B
Initial value					0			0	0
After \boldsymbol{T}_{1}	1	1	0	1	1	0	0		1
After T_{2}	1	1	1	0	1	1	0	0	0
After T_{3}	0	1	1	1	0	1	1	0	0
After T_{4}	1	0	1	1	1	0	1	1	1

Serial In/Parallel Out Shift Registers

- Accepts data serially.
- Outputs of all stages are available simultaneously.

Logic symbol

Parallel In/Serial Out Shift Registers

- Bits are entered simultaneously, but output
is serial.

Data input

Parallel In/ Serial Out Shift Registers

- Bits are entered simultaneously, but output is serial.

Logic symbol

Parallel In/Parallel Out Shift Registers

- Simultaneous input and output of all data bits.

Parallel data inputs

Bidirectional Shift Registers

- Data can be shifted either left or right, using a control line RIGHT/LEFT (or simply RIGHT) to indicate the direction.

Bidirectional Shift Registers

- 4-bit bidirectional shift register with parallel

Bidirectional Shift Registers

- 4-bit bidirectional shift register with parallel load.

Mode Control		
s_{1}	s_{0}	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

An Application - Serial Addition

- M ost operations in digital computers are done in parallel. Serial operations are slower but require less equipment.
- A serial adder is shown below. $A \leftarrow A+B$.

An Application - Serial Addition

- $A=0100 ; B=0111$. $A+B=1011$ is stored in A after 4 clock pulses.

Initial:	$\begin{aligned} & A: 010 \underline{0} \\ & B: 011 \underline{1} \end{aligned}$	$Q: \underline{0}$
$\text { Step 1: } \begin{aligned} & 0+1+0 \\ & S=1, C=0 \end{aligned}$	$\begin{aligned} & A: 1011 \\ & B: x \\ & x \end{aligned}$	$Q: \underline{0}$
$\text { Step 2: } \begin{aligned} & 0+1+0 \\ & \\ & S=1, C=0 \end{aligned}$	$\begin{aligned} & A: 1101 \\ & B: x \times 0 \leq 1 \end{aligned}$	$Q: \underline{0}$
$\text { Step 3: } \begin{aligned} & 1+1+0 \\ & \\ & S=0, C=1 \end{aligned}$	$\begin{aligned} & A: 011 \underline{0} \\ & B: x \times \underline{0} \end{aligned}$	Q: 1
$\text { Step 4: } \begin{aligned} & 0+0+1 \\ & S=1, C=0 \end{aligned}$	A: 1011 $B: \mathrm{xxxx}$	$Q: \underline{0}$

Shift Register Counters

- Shift register counter: a shift register with the serial output connected back to the serial input.
- They are classified as counters because they give a specified sequence of states.
- Two common types: the Johnson counter and the Ring counter.

Ring Counters

- One flip-flop (stage) for each state in the sequence.
- The output of the last stage is connected to the D input of the first stage.
- An n-bit ring counter cycles through n states.
- No decoding gates are required, as there is an output that corresponds to every state the counter is in.

Ring Counters

- Example: A 6-bit (M OD-6) ring counter.

Clock	Q_{0}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}
$\rightarrow 0$	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
5	0	0	0	0	0	1

Johnson Counters

- The complement of the output of the last stage is connected back to the D input of the first stage.
- Also called the twisted-ring counter.
- Require fewer flip-flops than ring counters but more flip-flops than binary counters.
- An n-bit Johnson counter cycles through $2 n$ states.
- Require more decoding circuitry than ring counter but less than binary counters.

Johnson Counters

- Example: A 4-bit (M OD-8) Johnson counter.

Clock	Q_{0}	Q_{1}	Q_{2}	Q_{3}
$\rightarrow 0$	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

Johnson Counters

- Decoding logic for a 4-bit Johnson counter.

Clock	A	B	C	D	Decoding
$\rightarrow 0$	0	0	0	0	$A^{\prime} \cdot D^{\prime}$
1	1	0	0	0	$A^{\prime} \cdot B^{\prime}$
2	1	1	0	0	$B^{\prime} C^{\prime}$
3	1	1	1	0	$C^{\prime} . D^{\prime}$
4	1	1	1	1	$A^{\prime} \cdot D^{\prime}$
5	0	1	1	1	$A^{\prime} \cdot B$
6	0	0	1	1	$B^{\prime} \cdot C$
7	0	0	0	1	$C^{\prime} \cdot D$

Random Access M emory (RAM)

- A memory unit stores binary information in groups of bits called words.
- The data consists of n lines (for n-bit words). Data input lines provide the information to be stored (written) into the memory, while data output lines carry the information out (read) from the memory.
- The address consists of k lines which specify which word (among the 2^{k} words available) to be selected for reading or writing.
- The control lines Read and Write (usually combined into a single control line Read/Write) specifies the direction of transfer of the data.

Random Access M emory (RAM)

- Block diagram of a memory unit:

Random Access M emory (RAM)

- Content of a 1024×16-bit memory:

	Memory address		Memory content
	binary	decimal	
	0000000000	0	1011010111011101
	0000000001	1	1010000110000110
	0000000010	2	0010011101110001
	:	:	:
	:	:	:
\triangle	1111111101	1021	1110010101010010
	1111111110	1022	0011111010101110
\triangle	1111111111	1023	1011000110010101

Random Access M emory (RAM)

- The Write operation:
* Transfers the address of the desired word to the address lines
* Transfers the data bits (the word) to be stored in memory to the data input lines
* Activates the Write control line (set Read/Write to 0)
- The Read operation:
* Transfers the address of the desired word to the address lines
* Activates the Read control line (set Read/Write to 1)

Random Access M emory (RAM)

- The Read/Write operation:

Memory Enable	Read/Write	Memory Operation
0	X	None
1	0	Write to selected word
1	1	Read from selected word

- Two types of RAM: Static and dynamic.
* Static RAMs use flip-flops as the memory cells.
* Dynamic RAMs use capacitor charges to represent data. Though simpler in circuitry, they have to be constantly refreshed.

Random Access M emory (RAM)

- A single memory cell of the static RAM has the following logic and block diagrams.

Read/Write
Block diagram

Random Access M emory (RAM)

- Logic construction of a 4×3 RAM (with decoder al

Random Access M emory (RAM)

- An array of RAM chips: memory chips are combined to form larger memory.
- A 1K x 8-bit RAM chip:

Block diagram of a $1 \mathrm{~K} \times 8$ RAM chip

Random Access M emory (RAM)

