Lecture 16
 Multiplexer/De-multiplexer

Mux/ Demux Vocabulary

MULTIPLEXER (aka DATA SELECTOR)- circuit that can select one of a number of inputs and pass the logic level of that input to the output.

DEMULTIPLEXER (aka DATA DISTRIBUTOR)- circuit that depending on the status of its select inputs will channel its data input to one of several outputs.

SELECT INPUTS (aka ADDRESS LINES)- used by the mux to determine which data inputs will be switched to the output.
if 2^{N} inputlines $=N$ select lines

Example of a Combinatorial Circuit: A Multiplexer (MUX)

Consider an integer ' m ', which is constrained by the following relation: $\mathbf{m}=\mathbf{2}^{\mathbf{n}}, \quad$ where m and n are both integers.

- A m-to-1 Multiplexer has
- m Inputs: $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}, \ldots \ldots \ldots \ldots \mathrm{I}_{(\mathrm{m}-1)}$
- one Output: Y
- n Control inputs: $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots \ldots . \mathrm{S}_{(\mathrm{n}-1)}$
- One (or more) Enable input(s)
such that Y may be equal to one of the inputs, depending upon the control inputs.

BASI C TWO-I NPUT MULTI PLEXER

Example: A 4-to-1 Multiplexer

A 4-to-1 Multiplexer:

FOUR-I NPUT MULTI PLEXER

MULTI PLEXER LOGIC DI AGRAM

-Takes one of many inputs and funnels it to an output \mathbf{Z}.
-Take the selector lines convert to a decimal number and this is the input funneled to the output.
-Strobe is active low enable

S2	S1			
\mathbf{c}	\mathbf{E}	\mathbf{Z}		
0	0	0	0	I 0
0	0	1	0	I 1
0	1	0	0	I 2
0	1	1	0	I 3
1	0	0	0	I 4
1	0	1	0	I 5
1	1	0	0	I 6
1	1	1	0	I 7

MULTI PLEXER APPLI CATI ONS

-DATA ROUTING
-PARALLEL-TO-SERIAL CONVERSION
-OPERATION SEQUENCING
-IMPLEMENT LOGIC FUNCTION OF A
TRUTH TABLE

Implementing Digital Functions : by using a Multiplexer

Implementation of $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(\mathrm{m}(1,3,5,7,8,10,12,13,14), \mathrm{d}(4,6,15))$
By using a 16-to-1 multiplexer:

NOTE: 4,6 and 15 MAY BE

