Lecture 4 Binary Arithmetic **Binary Arithmetic**

- Addition
- Subtraction
- •Complements 1's and 2's

Binar	y Ad	dition		
(a)	0 + 0		(b)	0 + 1
	0			1
(c)	1		(d)	1
	+ 0			+ 1
	1			10
			Carry Bit	

Binary Addition Examples

(a) 1011	(b) 1010	(c) 1011
+ 1100	+ 100	+ 101
10111	1110	10000

 (d)
 101
 (e)
 10011001

 + 1001
 +
 101100

 1110
 11000101

Two's Complement

The Two's complement of a binary number is obtained by first complementing the number and then adding 1 to the result.

1001110

0110010 - Two's Complement

Binary Subtraction

Binary subtraction is implemented by adding the Two's complement of the number to be subtracted.

If there is a carry then it is ignored. Thus, the answer is 0100.

Basic Digital Arithmetic

- Signed Binary Number: A binary number of fixed length whose sign (+/-) is represented by one bit (usually MSB) and its magnitude by the remaining bits
- Unsigned Binary Number: A binary number of fixed length whose sign is not specified by a bit. All bits are magnitude and the sign is assumed +.

Signed Binary Numbers

- Sign Bit: A bit (usually the MSB) that indicates whether a number is positive(=0) or negative (=1).
- Magnitude Bits: The bits of a signed binary number that tell how large it is in value.
- True Magnitude Form: A form of signed binary whose magnitude bits are the TRUE binary form (not complements).

Signed Binary Numbers

• 1s Complement: A form of signed binary in which negative numbers are created by complementing all bits.

 2s Complement: A form of signed binary in which the negative numbers are created by complementing all the bits and adding a 1 (1s Complement +1).

Unsigned Binary Arithmetic

- Sum: Result of an Addition Operation of two (or more) binary numbers (operands).
- Carry: A digit (or bit) that is carried over to the next most significant bit during an N Bit addition operation.
- The carry bit is a 1 if the result was too large to be expressed in N bits.

Basic Rules (Unsigned)

• One Bit Unsigned Addition

True Magnitude

Form

• 5 Bit Numbers Negative = S=1

2's complement of a binary number:

- Take the 1's complement of the number
- Add 1 to the least-significant-bit position

101101	binary equivalent of 45
010010	complement each bit to form 1's complement
<u>+ 1</u>	add 1 to form 2's complement
010011	2's complement of original binary number

Representing signed numbers using 2's complement form

- If the number is positive, the magnitude is represented in its positional-weighted binary form, and a sign bit of 0 is placed in front of the MSB.
- If the number is negative, the magnitude is represented in its 2's complement form, and a sign bit of 1 is placed in front of the MSB.

example

Example

 Represent each of the following signed decimal numbers as a signed binary number in the 2's-complement system. Use a total of five bits including the sign bit.

(a) +13 (b) -9 (c) +3 (d) -2 (e) -8

Addition in the 2's-complement system

• Case I: Two Postive Numbers.

Sign bits

• Case II: Positive Number and Smaller Negative Number

• Case III: Positive Number and Larger Negative Number

Negative sign bit $-9 \rightarrow 10111$ $+4 \rightarrow 00100$ 11011 (sum = -5)

• Case IV: two negative Numbers

```
\begin{array}{c} -9 \rightarrow 10111 \\ \underline{-4 \rightarrow 11100} \\ 1 10011 \\ \end{array}
\begin{array}{c} Sign \ bit \\ I \\ This \ carry \ is \ disregarded; \ the \ result \ is \\ 10011(sum = -13) \end{array}
```

Negative Result

• 2s Complement Negative Result (65-80)

+65 =	0 100 0001	100 0001	
-80 =	1 101 0000 (2s C.)	$+011\ 0000$	
		111 0001	
	Invert	000 1111	
	Add 1	+ 1	
	Final Result = -15	0000 1111 =	= 15(Neg.)

• Case V: Equal and Opposite Numbers

$$\begin{array}{rrrr} -9 \rightarrow 1 & 0111 \\ \underline{+9 \rightarrow 0 & 1001} \\ 0 & 1 & 0000 \\ & Disregard; the result is \\ 0000(sum = +0) \end{array}$$

Subtraction in the 2's-complement System

- The procedure for subtracting one binary number(the subtrahend) from another binary number(the minuend)
 - Negate the subtrahend. This will change the subtrahend to its equivalent value of opposite sign.
 - Add this to the minuend. The result of this addition will represent the difference between the subtrahend and the minuend.

Addition and Subtraction of BCD and Excess-3 Code

Unsigned Numbers BCD Addition

Use binary arithmetic to add the BCD digits:

- 8 1000 Eight +5 +0101 Plus 5
- 13 1101 is 13 (> 9)

3 <u>+5</u> 8 OK (< 9)

If result is > 9, it must generate a carry and be corrected! To correct the digit, add 0110 in the result.

8 1000 Eight <u>+5</u> <u>+0101</u> Plus 5 Replacing it with addition! 13 1101 13 (is > 9) <u>+0110</u> so add 6 (always, for results > 9) carry = 1 0011 giving 3 + carry 0001 | 0011 Final answer (two digits) The adder circuit utilizes the resulting carry bit by sending it as carry-in to the next digit Add 2905_{BCD} to 1857_{BCD} showing carries and digit corrections.

Excess-3 Code

A BCD Code formed by adding 3 (0011) to its true 4-bit binary value. Excess-3 is a self-complementing code: A negative code equivalent can be found by inverting the binary bits of the positive code Inverting the bits of the Exce: -3 digit yields 9's Complement of the decimal equivalent. Example : Excess -3 code of decimal 4 is 0111. (0100 + 0011 = 0111)

(4) = 0111

(-4) = 1000 (inverting the bits) which is Excess -3 code of decimal5.

It is 9's complement of the decimal equivalent. (9 - 4 = 5)

Excess-3 Examples 3 = 0011 + 0011 = 0110 = 6 in E3. 1 = 0001 + 0011 = 0100 = 4 in E3. If we complement 1 = 1011 in E3, this is the code for an 8. 9's Complement of 1 = (9 - 1) = 8 (SelfComplement)