## Lecture 4

Binary Arithmetic

## Binary Arithmetic

## - Addition

## -Subtraction

## -Complements - 1's and 2's

## Binary Addition

(a)

0
$\begin{array}{r}+0 \\ +0 \\ \hline\end{array}$
(c)

(b) $\begin{array}{r}0 \\ +1 \\ \hline 1 \\ \hline\end{array}$
(d) 1


Carry Bit

## Binary Addition Examples


(d) 101
$+1001$ 1110
(e) 10011001
$+\begin{array}{r}101100 \\ \hline 11000101\end{array}$

## Binary Complement

## (1s Complement) Operation

$1 \rightarrow 0$
$0 \rightarrow 1$
Example


## Two's Complement

The Two's complement of a binary number is obtained by first complementing the number and then adding 1 to the result. 1001110
$0110001 \Longleftarrow$ One's Complement $+\quad 1$
$0110010 \Longleftarrow$ Two's Complement

## Binary Subtraction

Binary subtraction is implemented by adding the Two's complement of the number to be subtracted.

Example

$$
\begin{aligned}
& 1101 \\
& -1001
\end{aligned}
$$



If there is a carry then it is ignored. Thus, the answer is 0100 .

## Basic Digital Arithmetic

- Signed Binary Number: A binary number of fixed length whose sign (+/-) is represented by one bit (usually MSB) and its magnitude by the remaining bits
- Unsigned Binary Number: A binary number of fixed length whose sign is not specified by a bit. All bits are magnitude and the sign is assumed +.


## Signed Binary Numbers

- Sign Bit: A bit (usually the MSB) that indicates whether a number is positive(=0) or negative (=1).
- Magnitude Bits: The bits of a signed binary number that tell how large it is in value.
- True Magnitude Form: A form of signed binary whose magnitude bits are the TRUE binary form (not complements).


## Signed Binary Numbers

- 1s Complement: A form of signed binary in which negative numbers are created by complementing all bits.
- 2s Complement: A form of signed binary in which the negative numbers are created by complementing all the bits and adding a 1 (1s Complement +1).


## Unsigned Binary Arithmetic

- Sum: Result of an Addition Operation of two (or more) binary numbers (operands).
- Carry: A digit (or bit) that is carried over to the next most significant bit during an N Bit addition operation.
- The carry bit is a 1 if the result was too large to be expressed in N bits.


## Basic Rules (Unsigned)

- One Bit Unsigned Addition

|  | $0+0=$ | 0 | 0 |
| :---: | :---: | :---: | :---: |
|  | $1+0=$ |  | 1 |
|  | $1+1=$ |  | 0 |
| CIN |  |  |  |

## True Magnitude

- 5 Bit Numbers Negative $=\mathrm{S}=1$


Note sign bit $=\mathrm{MSB}=\mathrm{S}=0$
Same as +25 with $S=1$

True magnitude

## 2's complement of a binary number:

- Take the 1's complement of the number
- Add 1 to the least-significant-bit position

| 101101 | binary equivalent of 45 |
| :---: | :--- |
| 010010 | complement each bit to form 1's complement |
| $+\quad 1$ | add 1 to form 2's complement |
| 010011 | 2's complement of original binary number |

## Representing signed numbers using 2's complement form

- If the number is positive, the magnitude is represented in its positional-weighted binary form, and a sign bit of 0 is placed in front of the MSB.
- If the number is negative, the magnitude is represented in its 2's complement form, and a sign bit of 1 is placed in front of the MSB.


## example



## Example

- Represent each of the following signed decimal numbers as a signed binary number in the 2's-complement system. Use a total of five bits including the sign bit.
(a) +13
(b) -9
(c) +3 (d) -2 (e) -8


## Addition in the 2's-complement system

- Case I: Two Postive Numbers.

$$
\begin{aligned}
& +9 \rightarrow 01001 \text { (augend) } \\
& +4 \rightarrow 00100 \text { (addend) } \\
& 0 / 1101 \text { (sum }=+13)
\end{aligned}
$$

Sign bits

## Addition, cont.

- Case II: Positive Number and Smaller Negative Number



## Addition, cont.

- Case III: Positive Number and Larger Negative Number

Negative sign bit<br>$-9 \rightarrow 10111$<br>$+4 \rightarrow 00100$<br>11011 (sum =-5)

## Addition, cont.

- Case IV: two negative Numbers

```
-9 -> }1011
-4 -> 11100
    1,10011 Sign bit
This carry is disregarded; the result is
10011(sum =-13)
```


## Negative Result

## Example

- 2s Complement Negative Result (65-80)

$$
\begin{aligned}
& +65=01000001 \quad 1000001 \\
& -80=11010000(2 \mathrm{~s} \mathrm{C} .)+0110000 \\
& 1110001 \\
& \text { Final Result }=-15 \quad 00001111=15(\text { Neg. })
\end{aligned}
$$

## Addition, cont.

- Case V: Equal and Opposite Numbers

\author{

$-9 \rightarrow 10111$ <br> $\begin{array}{r}+9 \rightarrow 01001 \\ \hline\end{array}$ <br> | 0 | 1 | 0000 |
| :--- | :--- | :--- | <br> Disregard; the result is <br> 0000(sum $=+0$ )

}

## Subtraction in the 2's-complement System

- The procedure for subtracting one binary number(the subtrahend) from another binary number(the minuend)
- Negate the subtrahend. This will change the subtrahend to its equivalent value of opposite sign.
- Add this to the minuend. The result of this addition will represent the difference between the subtrahend and the minuend.


## Addition and Subtraction of BCD and Excess-3 <br> Code

## Unsigned Numbers BCD Addition

Use binary arithmetic to add the BCD digits:

| 8 | 1000 | Eight |
| ---: | ---: | :--- |
| +5 | +0101 | Plus 5 |
| $\frac{+5}{13}$ | is $13(>9)$ |  |

$$
3
$$

If result is $>9$, it must generate a carry and be corrected!
To correct the digit, add 0110 in the result.

| 8 | 1000 | Eight |  |
| :---: | :---: | :---: | :---: |
| +5 | +0101 | Plus 5 | We try to avoid subtraction! Replacing it with addition! |
| 13 | 1101 | 13 ( is > 9) |  |
| +0110 so add 6 (always, for results > 9) |  |  |  |
| arry $=10011$ giving $3+$ carry |  |  |  |
| 0001 \| 0011 Final answer (two digits) |  |  |  |

The adder circuit utilizes the resulting carry bit by sending it as carry-in to the next digit

## Add $2905_{B C D}$ to $1857_{B C D}$ showing carries and digit corrections.



## Excess-3 Code

A BCD Code formed by adding 3 (0011) to its true 4-bit binary value. Excess-3 is a self-complementing code: A negative code equivalent can be found b) inverting the binary bits of the positive code Inverting the bits of the Exce: -3 digit yields 9's Complement of the decimal equivalent.
Example : Excess -3 code of decimal 4 is 0111 . ( $0100+0011=$ 0111)
(4) $=0111$
$(-4)=1000$ (inverting the bits) which is Excess -3 code of decimal
5.

It is 9 's complement of the decimal equivalent. $(9-4=5)$

$$
\begin{gathered}
\text { Excess-3 Examples } \\
\begin{array}{l}
3=0011+0011=0110=6 \text { in E3. } \\
1=0001+0011=0100=4 \text { in E3. } \\
\text { If we complement } 1=1011 \text { in E3, this } \\
\text { is the code for an } 8 .
\end{array} \\
\text { 9's Complement of } 1=(9-1)=8 \text { (SelfComplement) }
\end{gathered}
$$

