Lecture 24

BJT

Key Words: Basic Concepts High-Frequency BJT Model Frequency Response of the CE Amplifier

Basic Concepts

Basic Concepts

Basic Concepts

The drops of voltage gain (output/input) is mainly due to:

- 1. Increasing reactance of C_s, C_c, C_e (at low *f*)
- 2. Parasitic capacitive elements of the network (at high *f*)
- 3. Dissappearance of changing current (for transformer coupled amp.)

High-Frequency BJT Model

In BJTs, the PN junctions (EBJ and CBJ) also have capacitances associated with them

Frequency Response of the CE Amplifier

There are three capacitors in the circuit.

At the mid frequency band, these are considered to be short circuits and internal capacitors C'_{π} and C'_{μ} are considered to be open circuits.

Frequency Response of the CE Amplifier

At low frequencies, $C_{1,} C_{2}$ are an open circuit and the gain is zero. Thus C_{1} has a high pass effect on the gain, i.e. it affects the lower cutoff frequency of the amplifier.

$$\tau_1 = C_1 (R_s + R_{b1} // R_{b2} // r_{be})$$
$$f_{L1} = \frac{1}{2\pi\tau_1}$$

 τ_2 is the time constant for C_2 . $\Longrightarrow \tau_2 >> \tau_1$ ---is neglected

Frequency Response of the CE Amplifier

$$f_L \approx 1.1 \sqrt{f_{L1}^2 + f_{L2}^2 + \dots + f_{Le}'^2}$$

$$\tau_1 = C_1 (R_s + R_{b1} // R_{b2} // r_{be})$$

 $\tau_2 >> \tau_1$ ----is neglected

Capacitor Ce is an open circuit. The pole time constant is given by the resistance multiplied by Ce.

$$\tau_e = \left(\frac{\left(\frac{R_b}{R_s} + r_{be}\right)}{1 + \beta} / R_e\right) C_e$$
$$f_{Le} = \frac{1}{2\pi\tau_e}$$

Frequency Response of the CE Amplifier

At high frequencies, $C_{1,}C_{2}C_{e}$ are all short circuit.

The frequency that dominates is the lowest pole frequency.

The time constant is neglected for C'_{μ} $(R'_{L} << 1/j\omega C'_{\mu})$ $\tau_{C'_{\pi}} = (R_{b} // R_{s} // r_{be}) C'_{\pi}$ $f_{H} = \frac{1}{2\pi\tau_{C'_{\pi}}}$

In summary: the lower cut off frequency is determined by network capacitence. e.g. $C_1(C_2, C_e)$ The higher cut off frequency is determined by the parasitic ferquency of the BJT. e.g. C'_{π}

Frequency Response of the CE Amplifier

Frequency Response of the CE Amplifier

