ANALOG ELECTRONICS

LECTURE NO. 9

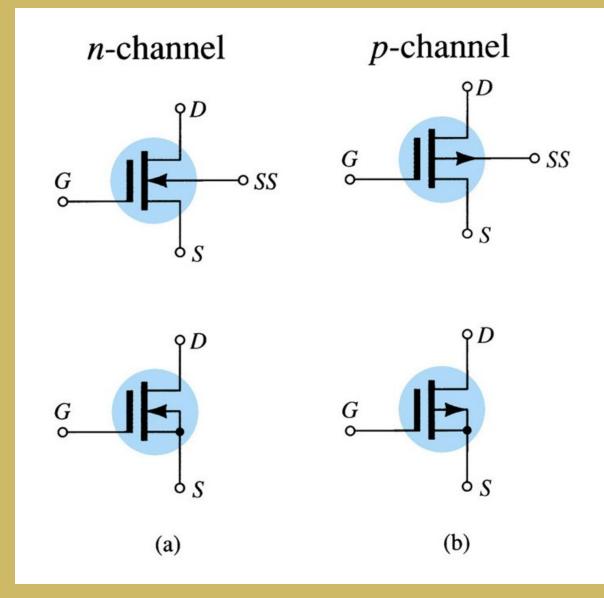
MOSFET'S

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful

There are 2 types of MOSFET's:

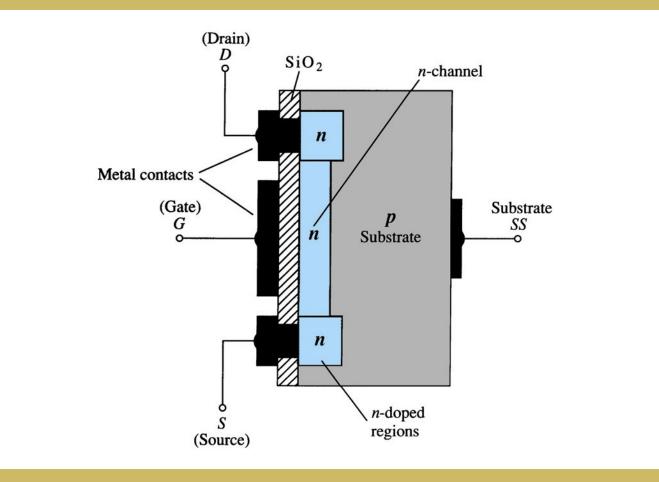
- Depletion mode MOSFET (D-MOSFET)
 - Operates in Depletion mode the same way as a JFET when $V_{GS} \le 0$
 - Operates in Enhancement mode like E-MOSFET when $V_{GS} > 0$
- Enhancement Mode MOSFET (E-MOSFET)
 - Operates in Enhancement mode
 - $I_{DSS} = 0$ until $V_{GS} > V_T$ (threshold voltage)


MOSFETs

MOSFETs are very static sensitive. Because of the very thin SiO_2 layer between the external terminals and the layers of the device, any small electrical discharge can stablish an unwanted conduction.

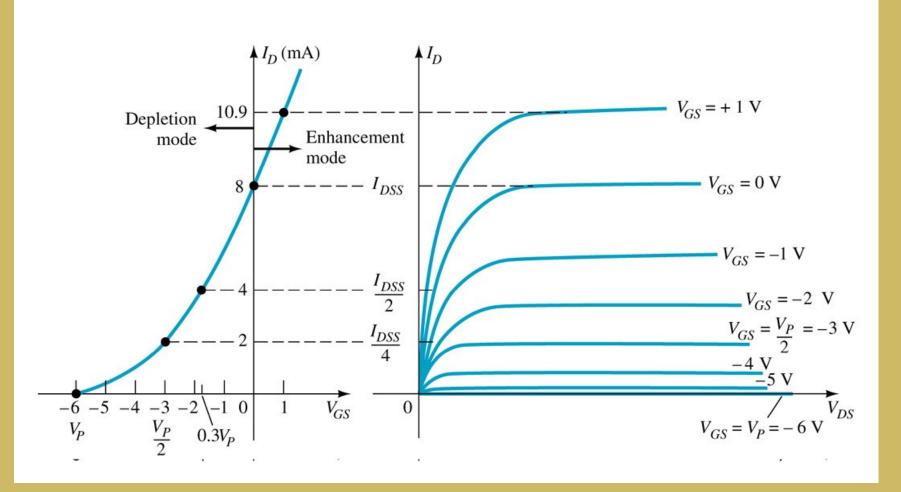
Protection:

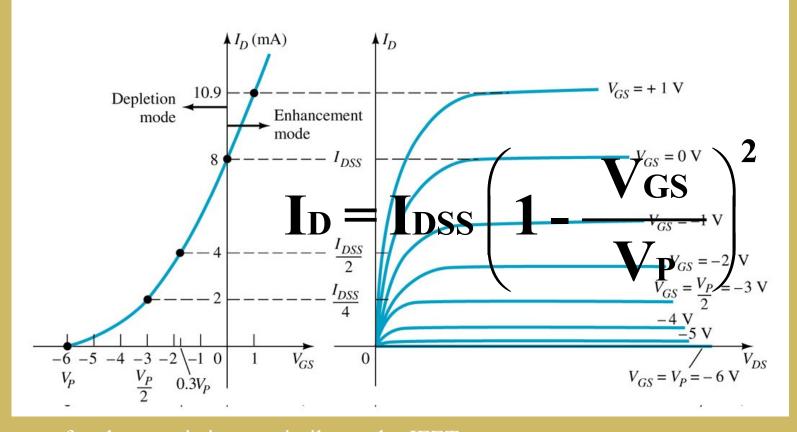
- Always transport in a static sensitive bag
- Always wear a static strap when handling MOSFETS
- Apply voltage limiting devices between the Gate and Source, such as back-toback Zeners to limit any transient voltage


D-MOSFET Symbols

111 VILUE D 4750/C				2N3797 CASE 22-03, STYLE 2 TO-18 (TO-206AA)				
MAXIMUM RATINGS Rating	Symbol	Value	Unit	1	11	Gate	F	
Drain–Source Voltage 2N3797	V _{DS}	20	Vdc	3	/].	20-		
Gate-Source Voltage	VGS	±10	Vdc		2.1		15	ource
Drain Current	ID	20	mAdc		8	MOSFE	Те	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C	LOW POWER AUDIO			0	
Junction Temperature Range	Tj	+175	°C]	N-CHAN	NEL - D	EPLETIC	N
Storage Channel Temperature Range	T _{sig}	-65 to +200	ъ		0.03000	1000	-002002	
ELECTRICAL CHARACTERISTICS	(TA = 25'C)	unless otherwise	e noted)					
Characteristic				Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain Source Breakdown Voltage ($V_{CS} = -7.0 \text{ V}, I_D = 5.0 \mu \text{A}$)		2	N3797	V _{(BR)OSX}	20	25	-	Vdc
				I _{GSS}	1 1		1.0 200	pAdc
Gate Source Cutoff Voltage (I _D = 2.0 µA, V _{DS} = 10 V)		2	N3797	V _{G8(off)}	-	-5.0	-7.0	Vdc
Drain-Gate Reverse Current (1) ($V_{DG} = 10 \text{ V}, I_S = 0$)				IDOD	5	-	1.0	pAdc
ON CHARACTERISTICS							(
Zero-Gate-Voltage Drain Current ($V_{DS} = 10 \text{ V}, V_{GS} = 0$)		2	N3797	I _{DSS}	2.0	2.9	6.0	mAdc
On-State Drain Current (V _{DS} = 10 V, V _{GS} = +3.5 V)		2	N3797	I _{D(at)}	9.0	14	18	mAde
SMALL-SIGNAL CHARACTERISTIC	s							
Forward Transfer Admittance (V_{DS} = 10 V, V_{OS} = 0, f = 1.0 kHz)		2	N3797	y _{fs}	1500	2300	3000	μmhos
$(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$		2	N3797		1500	-	12	
Output Admittance (I _{DS} = 10 V, V _{GS} = 0, f = 1.0 kHz)			N3797	Yos		27	60	µmhos
			13191	C.		27		ali
Input Capacitance ($V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	1	2	N3797	Cina	4	6.0	8.0	pF
Reverse Transfer Capacitance (V _{DS} = 10 V, V _{GS} = 0, f = 1.0 MHz)				Cm	1	0.5	0.8	pF
FUNCTIONAL CHARACTERISTICS								
Noise Figure (V _{DS} = 10 V, V _{GS} = 0, f = 1.0 kHz, R _S	1			NF		3.8	1	dB

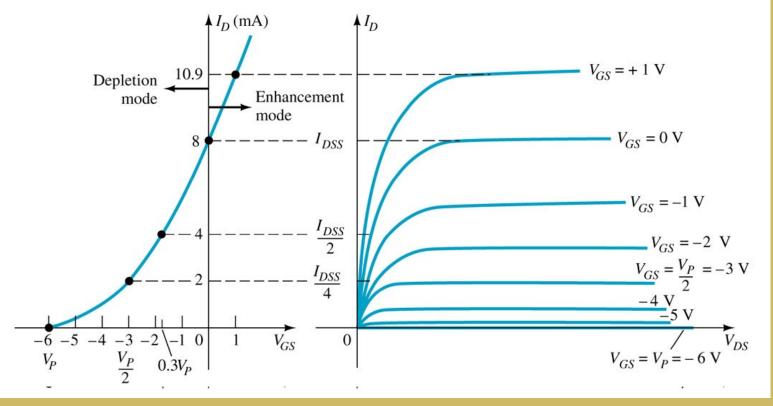
(1) This value of current includes both the FET leakage current as well as the leakage current associated with the test socket and fixture when measured under best attainable conditions.


Depletion Mode MOSFET Construction


The Drain (D) and Source (S) leads connect to the to n-doped regions These N-doped regions are connected via an n-channel This n-channel is connected to the Gate (G) via a thin insulating layer of SiO₂ The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS

Basic Operation

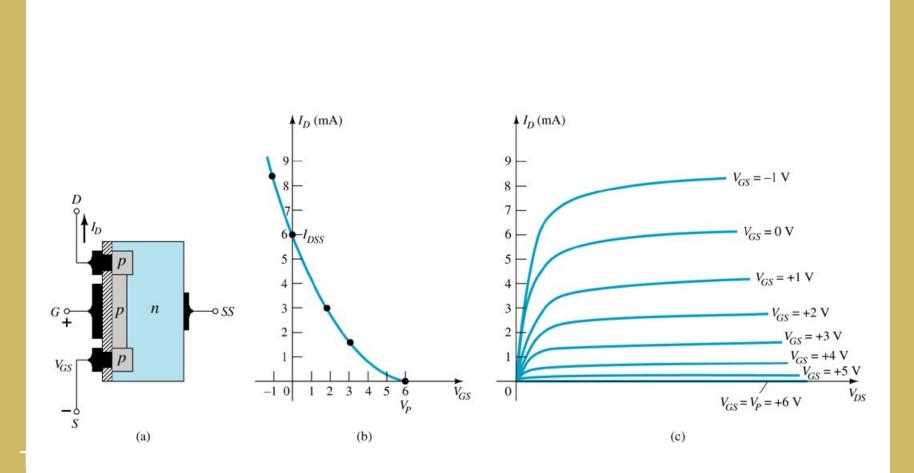
A D-MOSFET may be biased to operate in two modes: the **Depletion** mode or the **Enhancement** mode



D-MOSFET Depletion Mode Operation

The transfer characteristics are similar to the JFET In Depletion Mode operation: When $V_{GS} = 0V$, $I_D = I_{DSS}$ When $V_{GS} < 0V$, $I_D < I_{DSS}$ When $V_{GS} > 0V$, $I_D > I_{DSS}$ The formula used to plot the Transfer Curve, is:

D-MOSFET Enhancement Mode Operation



Enhancement Mode operation

In this mode, the transistor operates with $V_{GS} > 0V$, and I_D increases above I_{DSS} Shockley's equation, the formula used to plot the Transfer Curve, still applies but V_{GS} is positive:

$$\mathbf{I}_{\mathrm{D}} = \mathbf{I}_{\mathrm{DSS}} \left(1 - \frac{\mathbf{V}_{\mathrm{GS}}}{\mathbf{V}_{\mathrm{P}}} \right)^{2}$$

p-Channel Depletion Mode MOSFET

