Lecture 12

MOSFET

4.3 MOSFET Circuits at DC

- We study a number of design and analysis examples of circuits with DC voltages and currents only
- In the following examples, we will neglect the Channel Length Modulation effect, i.e.

$$\lambda = 0$$

- Recall that: $V_{OV} = V_{GS} V_t$
 - For NMOS transistors: V_t and V_{OV} are +ve
 - For PMOS transistors: V_t and V_{OV} are -ve

4.3 MOSFET Circuits at DC

Example 4.2: Design the circuit shown so that the transistor operates at $I_D = 0.4$ mA and $V_D = +0.5$ V. The NMOS transistor has $V_t = 0.7$ V, $\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$, $L = 1 \ \mu\text{m}$, and $W = 32 \ \mu\text{m}$.

In Which Region Does the NMOS Operate?

MOSFET Circuits at DC cont.

Example 4.3: Design the circuit shown to obtain a Current I_D of 80 μ A. Find the value required for R and find the DC voltage V_D . Let the NMOS transistor have $V_t = 0.6 \text{ V}$, $\mu_n C_{ox} = 200 \text{ }\mu\text{A/V}^2$, $L = 0.8 \text{ }\mu\text{m}$, and $W = 4 \text{ }\mu\text{m}$.

In Which Region Does the NMOS Operate?

MOSFET Circuits at DC cont.

Exercise: From the previous example, let the voltage V_D be applied to the gate of another transistor Q_2 as shown in the Figure below. Assume that Q_2 is identical to Q_1 . Find the drain current and voltage of Q_2 .

In Which Region Does Q₂ Operate?