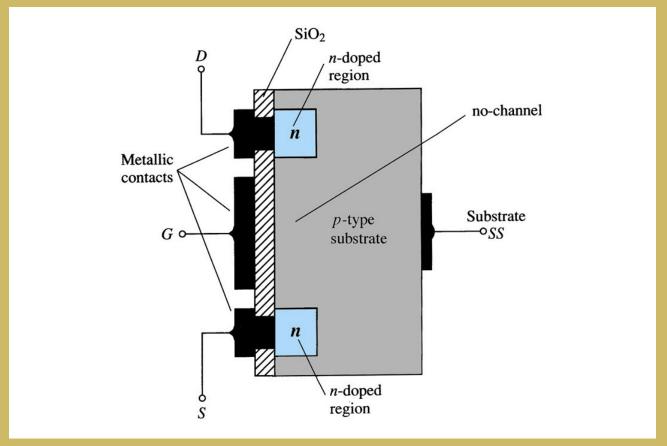

ANALOG ELECTRONICS


LECTURE NO. 11

ENHANCEMENT MODE MOSFET'S

n-Channel E-MOSFET showing channel length L and channel width W

Enhancement Mode MOSFET Construction

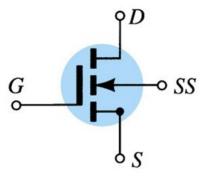
The Drain (D) and Source (S) connect to the to n-doped regions
These n-doped regions are not connected via an n-channel without an external voltage

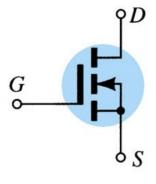
The Gate (G) connects to the p-doped substrate via a thin insulating layer of SiO₂ The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS

Specification Sheet

MAXIMUM RATINGS

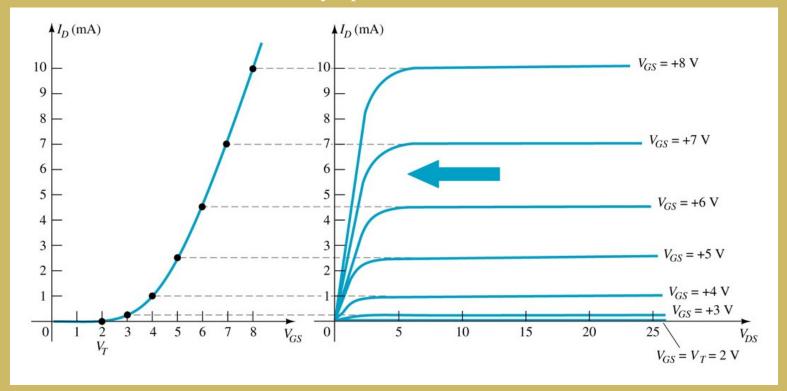
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage*	V _{GS}	30	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	300 1.7	mW mW/°C
Junction Temperature Range	T _j	175	°C
Storage Temperature Range	Tstg	-65 to +175	°C

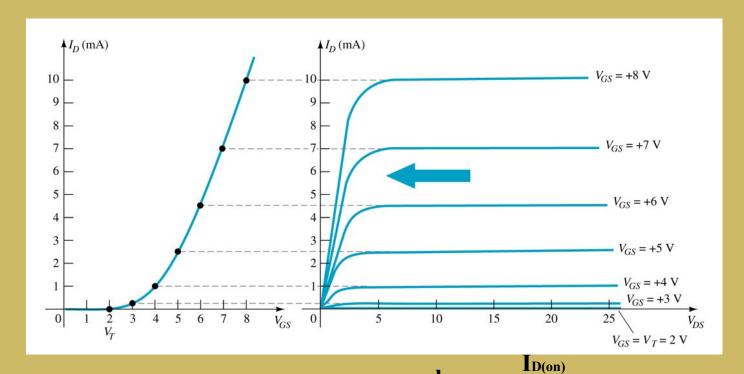

^{*} Transient potentials of ± 75 Volt will not cause gate-oxide failure.



Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		191100-0		
Drain-Source Breakdown Voltage $(I_D = 10 \mu A, V_{GS} = 0)$	$V_{(BR)DSX}$	25	-	Vdc
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = 0) T_A = 25^{\circ}\text{C}$ $T_A = 150^{\circ}\text{C}$	I _{DSS}	-	10 10	nAdc µAdc
Gate Reverse Current $(V_{GS} = \pm 15 \text{ Vdc}, V_{DS} = 0)$	I _{GSS}	-	± 10	pAdc
ON CHARACTERISTICS				
Gate Threshold Voltage $(V_{DS} = 10 \text{ V}, I_D = 10 \mu\text{A})$	V _{GS(Th)}	1.0	5	Vdc
Drain-Source On-Voltage (I _D = 2.0 mA, V _{GS} = 10V)	V _{DS(on)}	-	1.0	v
On-State Drain Current (V _{GS} = 10 V, V _{DS} = 10 V)	I _{D(on)}	3.0	-	mAdo
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance $(V_{DS} = 10 \text{ V}, I_D = 2.0 \text{ mA}, f = 1.0 \text{ kHz})$	y _{fs}	1000	-	μmho
Input Capacitance (V _{DS} = 10 V, V _{GS} = 0, f = 140 kHz)	C _{iss}	(7)	5.0	pF
Reverse Transfer Capacitance $(V_{DS} = 0, V_{OS} = 0, f = 140 \text{ kHz})$	C _{rss}		1.3	pF
Drain-Substrate Capacitance (V _{D(SUB)} = 10 V, f = 140 kHz)	C _{d(sub)}	-	5.0	pF
Drain-Source Resistance $(V_{GS} = 10 \text{ V}, I_D = 0, f = 1.0 \text{ kHz})$	F _{ds(on)}	-	300	ohms
SWITCHING CHARACTERISTICS				
Turn-On Delay (Fig. 5)	t _{d1}	-	45	ns
Rise Time (Fig. 6) $I_D = 2.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc},$ $(V_{GS} = 10 \text{ Vdc})$	t,	-	65	ns
Turn-Off Delay (Fig. 7) (V _{GS} = 10 Vdc) (See Figure 9; Times Circuit Determined)	t _{d2}	-	60	ns
Fall Time (Fig. 8)	t _f	-	100	ns

E-MOSFET Symbols

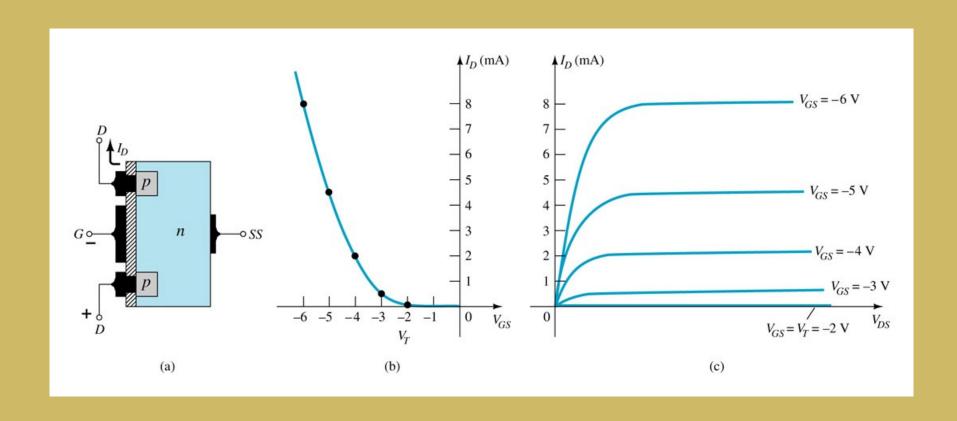

n-channel


Basic Operation

The Enhancement mode MOSFET only operates in the enhancement mode.

 $V_{GS} \ is \ always \ positive \\ I_{DSS} = 0 \ when \ V_{GS} < V_{T} \\ As \ V_{GS} \ increases \ above \ V_{T}, \ I_{D} \ increases \\ If \ V_{GS} \ is \ kept \ constant \ and \ V_{DS} \ is \ increased, \ then \ I_{D} \ saturates \ (I_{DSS}) \\ The \ saturation \ level, \ V_{DSsat} \ \ is \ reached.$

Transfer Curve


To determine ID given VGS: $I_D = k (V_{GS} - V_T)^2 \overline{(V_{GS(ON)} - V_T)^2}$ where V_T = threshold voltage or voltage at which the MOSFET turns on. k = constant found in the specification sheet

The PSpice determination of k is based on the geometry of the device:

$$k = \left(\frac{W}{L}\right)\left(\frac{KP}{2}\right)$$
 where $KP = \mu_N C_{OX}$

p-Channel Enhancement Mode MOSFETs

The p-channel Enhancement mode MOSFET is similar to the n-channel except that the voltage polarities and current directions are reversed.

Summary Table

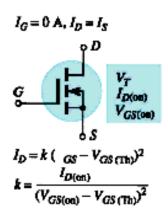
JFET

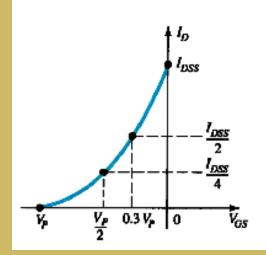
$I_G = 0$ A, $I_D = I_S$ I_{DSS} V_P

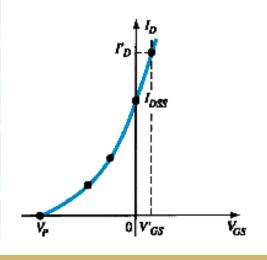
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

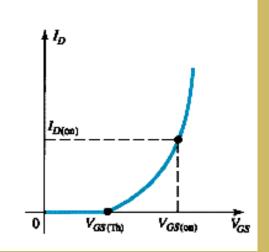
D-MOSFET

$$I_{G} = 0 \text{ A, } I_{D} = I_{S}$$


$$G \qquad \qquad D$$


$$I_{DSS}$$


$$V_{P}$$


$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2}$$

E-MOSFET

