

CLAMPER

The clamping network is to "clamp" a signal to a different dc level. Also known as dc restorers. The clamping ckt is often used in TV receivers as a dc restorer.

- The network consists of:
a) Capacitor
b) Diode
c) Resistive element
d) Independent dc supply (option)
- The magnitude of R and C must be chosen such that the time constant
$\tau=R C$ is large enough to ensure that the voltage across the capacitor does not discharge significantly during the interval the diode is non conducting.
- Our analysis basis that all capacitor is fully charge and discharge in 5 time constant.

OPERATION OF CLAMPER

Tips: Clamping network

Total swing o/p signal = the total swing i/p signal

Solution:

Step 1: Consider the part of i/p signal that will forward bias the diode. From network (t1-t2:-ve region)

Step 2: During ON state assume capacitor will charge to a voltage level determined by the network. Find the store voltage capacitor \& obtained Vo

$$
\begin{gathered}
\text { KVL: }-20+V c-5=0 \\
V c=25 v
\end{gathered}
$$

$$
\mathrm{Vo}=5
$$

Step 3: During OFF state assume capacitor will hold on its established voltage level. From network (t2 - t3:+ve region)

Step 4: Obtained Vo

$$
\begin{array}{|l}
\hline \text { K VL: } 10 . \mathrm{Vc} . \mathrm{Vo} \\
10.25 . \mathrm{Vo} 0 \\
\text { Vo } 35 \mathrm{~V} \\
\text { Timeconstanof dischargig is determined } \\
\text { by : . RC. }(100 \mathrm{k})(1 \mathrm{u}) .100 \mathrm{~ms} \\
\text { The totaldischargetimeis } 5 \quad 5(100 \mathrm{~ms}) \quad 500 \mathrm{~ms} \\
\hline
\end{array}
$$

Solution (cntd):

Step 5: Checking!!! total swing o/p signal = total swing i/p signal From network (t2 - t3: +ve region)

SUMMARY OF CLAMPER CIRCUITS

Clamping Networks

