Synthesis of Transfer Functions of 2 – port n /w with 1

ohm terminated Load

- <u>L</u> –C Networks with zeros at S = 0 or s = ∞
- <u>Steps to be followed</u>
- 1. Identify no of zeros of transfer function and where they are located. S = 0 or $s = \infty$.
- 2. Identify the circuit (LP filter or HP filter) or how L & C located.
- 3. Identify N(s) of $Z_{21}(s) / Y_{21}(s)$ whether Even or Odd.
- 4. Segregate D(s) of Z₂₁(s) / Y₂₁(s) into Even and Odd parts .
- 5. Express $Z_{21}(s) / Y_{21}(s)$ as $z_{21}(s)$ $y_{21}(s)$ $Z_{21} = -----$ or $Y_{21} = ------ 1 + z_{22}(s)$ $1 + y_{22}(s)$

(Divide N(s) & D(s) By even part if N(s) is odd and by odd part if N(s) is even)

- 6. Synthesise $z_{22}(s)$ or $y_{22}(s)$ as Ladder network starting from 1 ohm side .
- 7. NOTE: If $Z_{21}(s)$ has all ZEROS at $S = \infty$ only then CAUER I NETWORK. If $Z_{21}(s)$ has all ZEROS AT S = 0 only then CAUER – II NETWORK

- $Z_{21}(s) = 1 / (S^3 + 3s^2 + 3s + 2)$
- 1. No of zeros of transmission = 3 and are at s
 =∞
- 2. Identify the L-C circuit as LP filter.
 Circuit shown in next slide

- 3. Identify N(s) of Z₂₁(s) as Even or odd. Z₂₁(s) = 1/(S³ + 3s² + 3s + 2) In this case Even .
 - 4. D(s) of $Z_{21}(s)$ Even part $3s^2+2$ Odd part $S^3 + 3s$ 5. $Z_{21}(s) = 1/(S^3 + 3s)$ $z_{21}(s) = 1/(S^3 + 3s)$ $z_{22}(s) = (3s^2+2)/(S^3 + 3s)$
 - 6. Synthesize $z_{22}(s)$ in Ladder n /w to have three zeros at $s = \infty$

USE CAUER - I NETWORK

(Degree of Denominator higher , so invert . First element will be shunt element C and y_{22} from 1 ohm side)

- $Y_{21}(s) = 1 / (S^3 + 2s^2 + 2s + 1)$
- 1. No of zeros of transmission = 3 and are at s
 =∞
- 2. Identify the L-C circuit as LP filter.

- $Z_{21}(s) = S^3 / (S^3 + 3s^2 + 4s + 2)$
- 1. No of zeros of transmission = 3 and are at s
 = 0
- 2. Identify the L-C circuit as HP filter.
 Circuit shown in next slide

- 3. Identify N(s) of Z₂₁(s) as Even or odd. Z₂₁(s) = S³ /(S³ + 3s² + 4s + 2) In this case Odd .
 - 4. D(s) of $Z_{21}(s)$ Even part $3s^2 + 2$ Odd part $S^3 + 4s$ 5. $Z_{21}(s) = S^3 / (3s^2 + 2)$ $1 + (S^3 + 4s) / (3s^2 + 2)$ $z_{21}(s) = S^3 / (3s^2 + 2)$ $z_{21}(s) = S^3 / (3s^2 + 2)$ and $z_{22}(s) = (S^3 + 4s) / (3s^2 + 2)$
 - 6. Synthesize $z_{22}(s)$ in Ladder n /w to have three zeros at s = 0 USE CAUER -II NETWORK $z_{22}(s) = (4s + S^3)/(2 + 3s^2)$

(Degree of Denominator Lower , so invert .First element will be shunt element L and y_{22.} from 1 ohm side . Y₂ , z₃ and y₄ respectively)

- $Y_{21}(s) = S^3 / (S^3 + 3s^2 + 3s + 2)$
- 1. No of zeros of transmission = 3 and are at s
 = 0
- 2. Identify the L-C circuit .

- 3. Identify N(s) of Y₂₁(s) as Even or odd. Y₂₁(s) = S³ /(S³ + 3s² +3s + 2) In this case Odd .
 - 4. D(s) of $Z_{21}(s)$ Even part $3s^2 + 2$ Odd part $S^3 + 3s$ 5. $Y_{21}(s) = S^3 / (3s^2 + 2)$ $y_{21}(s) = \frac{y_{21}(s)}{1 + (S^3 + 3s)/(3s^2 + 2)}$

 $y_{21}(s) = S^3 / (3s^2+2)$ and $y_{22}(s) = (S^3+3s)/(3s^2+2)$

6. Synthesize $y_{22}(s)$ in Ladder n /w to have three zeros at s = 0 USE CAUER -II NETWORK $z_{22}(s) = (4s + S^3)/(2 + 3s^2)$

(Degree of Denominator Lower , so invert .First element will be series element C and y_{22} from 1 ohm side . Z_2 , Y_3 and Z_4 respectively)

- $Y_{21}(s) = S^2 / (S^3 + 3s^2 + 4s + 2)$
- 1. Two zeros of transmission are at s = 0 and one at s= ∞
- 2. Identify the L-C circuit . This is neither as HP filter and nor as LP filter type circuit.
- 3. Identify N(s) of Z₂₁(s) as Even or odd. Z₂₁(s) = S² /(S³ + 3s² + 4s + 2) In this case Even

6 $y_{22}(s) = (3s^2+2) / s(s^2+4s).$

7. A parallel inductor gives a zero of transmission at s = 0

•
$$y_{22}(s) = (3s^2+2) / s(s^2+4s).$$

= $(1/2s) + (5s/2) / (s^2+4)$
= $(1/2s) + 1/ [(2/5)s + (8/5)s]$
= $Y_A + Y_B$
 $Y_A = (1/2s)$ represents an inductance of 2H
 $Y_B = 1/ [(2/5)s + (8/5)s] = 1 / Z_B$
or Z_B represents that it is a combination of two elements in series
which give zeros at s = 0 and at s = ∞

These give an inductor of (2/5) H and a capacitor of (5/8) F

overall network as looked from 1 ohm side is shown on the next slide.

• $Y_{21}(s) = 1 / (s^3 + 2s^2 + 2s + 1)$

T-n/w series branches L =(3/2) H and (1/2) H. Shunt branch (4/3) F

• $z_{21}(s) = s / (s^3 + 3s^2 + 3s + 2)$

(9/7) H in series with (7/6) F with (1/3)F capacitor in parallel with 1 ohm resistor