Synthesis of Transfer Functions of 2 –port n /w with 1 ohm terminated Load

- L –C Networks with zeros at $S = 0$ or $s = \infty$
- Steps to be followed
 1. Identify no of zeros of transfer function and where they are located. $S = 0$ or $s = \infty$.
 2. Identify the circuit (LP filter or HP filter) or how L & C located.
 3. Identify $N(s)$ of $Z_{21}(s) / Y_{21}(s)$ whether Even or Odd.
 4. Segregate $D(s)$ of $Z_{21}(s) / Y_{21}(s)$ into Even and Odd parts.
- 5. Express $Z_{21}(s) / Y_{21}(s)$ as $z_{21}(s)$

$$Z_{21} = \frac{z_{21}(s)}{y_{21}(s)}$$

or $Y_{21} = \frac{y_{21}(s)}{z_{21}(s)}$

(Divide $N(s)$ & $D(s)$ By even part if $N(s)$ is odd and by odd part if $N(s)$ is even)

6. Synthesise $z_{22}(s)$ or $y_{22}(s)$ as Ladder network starting from 1 ohm side.

7. NOTE: If $Z_{21}(s)$ has all ZEROS at $S = \infty$ only then CAUER – I NETWORK.

 If $Z_{21}(s)$ has all ZEROS AT $S = 0$ only then CAUER – II NETWORK.
Synthesis with 1 ohm termination

• $Z_{21}(s) = \frac{1}{S^3 + 3S^2 + 3S + 2}$

• 1. No of zeros of transmission = 3 and are at $s = \infty$

• 2. Identify the L-C circuit as LP filter.

 Circuit shown in next slide
Synthesis with 1 ohm termination

3. Identify N(s) of \(Z_{21}(s) \) as Even or odd. \(Z_{21}(s) = \frac{1}{S^3 + 3s^2 + 3s + 2} \)
 In this case Even.

4. D(s) of \(Z_{21}(s) \)
 Even part \(3s^2 + 2 \)
 Odd part \(S^3 + 3s \)

5. \(Z_{21}(s) = \frac{1}{S^3 + 3s} \)

\[\frac{z_{21}(s)}{1 + \frac{(3s^2 + 2)}{(S^3 + 3s)}} = 1 + z_{22}(s) \]
\[z_{21}(s) = \frac{1}{S^3 + 3s} \quad \text{and} \quad z_{22}(s) = \frac{(3s^2 + 2)}{(S^3 + 3s)} \]

6. Synthesize \(z_{22}(s) \) in Ladder n/w to have three zeros at \(s = \infty \)

 USE CAUER - I NETWORK

 (Degree of Denominator higher, so invert. First element will be shunt element C and \(y_{22} \) from 1 ohm side)
Synthesis with 1 ohm termination

- $Y_{21}(s) = \frac{1}{S^3 + 2s^2 + 2s + 1}$
- 1. No of zeros of transmission = 3 and are at $s = \infty$
- 2. Identify the L-C circuit as LP filter.
Synthesis with 1 ohm termination

- \(Z_{21}(s) = \frac{S^3}{S^3 + 3s^2 + 4s + 2} \)
- 1. No of zeros of transmission = 3 and are at \(s = 0 \)
- 2. Identify the L-C circuit as HP filter.

Circuit shown in next slide
Synthesis with 1 ohm termination

• 3. Identify N(s) of $Z_{21}(s)$ as Even or odd. $Z_{21}(s) = \frac{S^3}{S^3 + 3s^2 + 4s + 2}$
In this case Odd.

4. $D(s)$ of $Z_{21}(s)$
 Even part $3s^2 + 2$
 Odd part $S^3 + 4s$

5. $Z_{21}(s) = \frac{S^3}{(3s^2 + 2)}$
 $\frac{z_{21}(s)}{1 + \frac{(S^3 + 4s)}{(3s^2 + 2)}} = \frac{1 + z_{22}(s)}{1 + \frac{z_{22}(s)}{z_{21}(s)}}$
 $z_{21}(s) = \frac{S^3}{(3s^2 + 2)}$ and $z_{22}(s) = \frac{(S^3 + 4s)}{(3s^2 + 2)}$

6. Synthesize $z_{22}(s)$ in Ladder n /w to have three zeros at $s = 0$
 USE CAUER -II NETWORK $z_{22}(s) = \frac{(4s + S^3)}{(2 + 3s^2)}$
 (Degree of Denominator Lower, so invert. First element will be shunt element L and y_{22} from 1 ohm side. Y_2, z_3 and y_4 respectively)
Synthesis with 1 ohm termination

- \(Y_{21}(s) = \frac{S^3}{S^3 + 3s^2 + 3s + 2} \)
- 1. No of zeros of transmission = 3 and are at \(s = 0 \)
- 2. Identify the L-C circuit.
3. Identify $N(s)$ of $Y_{21}(s)$ as Even or odd. $Y_{21}(s) = \frac{S^3}{S^3 + 3s^2 + 3s + 2}$
 In this case Odd.

4. $D(s)$ of $Z_{21}(s)$
 - Even part: $3s^2 + 2$
 - Odd part: $S^3 + 3s$

5. $Y_{21}(s) = \frac{S^3}{(3s^2 + 2)}$

 $$\frac{y_{21}(s)}{y_{21}(s)} = \frac{1 + y_{22}(s)}{1 + \frac{(S^3 + 3s)}{(3s^2 + 2)}}$$

 $y_{21}(s) = \frac{S^3}{(3s^2 + 2)}$ and $y_{22}(s) = \frac{(S^3 + 3s)}{(3s^2 + 2)}$

6. Synthesize $y_{22}(s)$ in Ladder n/w to have three zeros at $s = 0$

 USE CAUER -II NETWORK $z_{22}(s) = \frac{(4s + S^3)}{(2 + 3s^2)}$

 (Degree of Denominator Lower, so invert. First element will be series element C and y_{22} from 1 ohm side. Z_2, Y_3 and Z_4 respectively)
Synthesis with 1 ohm termination

- \(Y_{21}(s) = \frac{S^2}{S^3 + 3s^2 + 4s + 2} \)

1. Two zeros of transmission are at \(s = 0 \) and one at \(s = \infty \)

2. Identify the L-C circuit. This is neither as HP filter and nor as LP filter type circuit.

3. Identify \(N(s) \) of \(Z_{21}(s) \) as Even or odd. \(Z_{21}(s) = \frac{S^2}{S^3 + 3s^2 + 4s + 2} \)

 In this case Even

4. \(D(s) \) of \(Y_{21}(s) \)

 Even part \(3s^2 + 2 \)

 Odd part \(S^3 + 4s \)

 \(\frac{S^2}{S^3 + 4s} \)

5. \(Y_{21}(s) = \frac{\text{Even part}}{\text{Odd part}} = \frac{S^2}{(S^3 + 3s + 4s)} \)

 \(Y_{21}(s) = S^2 / (S^3 + 3s) \)

 and \(y_{22}(s) = \frac{(3s^2 + 2)}{(S^3 + 4s)} \)

6. \(y_{22}(s) = (3s^2 + 2) / s(s^2 + 4s) \).

7. A parallel inductor gives a zero of transmission at \(s = 0 \)
Synthesis with 1 ohm termination

- $y_{22}(s) = \frac{(3s^2 + 2)}{s(s^2 + 4s)}.$

 $$= \frac{1}{2s} + \frac{5s}{2(s^2 + 4)}$$

 $$= \frac{1}{2s} + 1/ [(2/5)s + (8/5)s]$$

 $$= Y_A + Y_B$$

$Y_A = (1/2s)$ represents an inductance of 2H

$Y_B = 1/ [(2/5)s + (8/5)s] = 1 / Z_B$

or Z_B represents that it is a combination of two elements in series which give zeros at $s = 0$ and at $s = \infty$

These give an inductor of $2/5$ H and a capacitor of $5/8$ F

overall network as looked from 1 ohm side is shown on the next slide.
Synthesis with 1 ohm termination

- \(Y_{21}(s) = \frac{1}{s^3 + 2s^2 + 2s + 1} \)

 T- n/w series branches \(L = \frac{3}{2} \) H and \(\frac{1}{2} \) H. Shunt branch \(\frac{4}{3} \) F

- \(Y_{21}(s) = \frac{s^3}{s^3 + 3s^2 + 3s + 2} \)

 T- n/w series branches \(C = \frac{3}{7} \) F and \(\frac{3}{2} \) F. Shunt branch \(\frac{7}{9} \) H

- \(z_{21}(s) = \frac{s}{s^3 + 3s^2 + 3s + 2} \)

 (\(\frac{9}{7} \) H in series with \(\frac{7}{6} \) F with \(\frac{1}{3} \) F capacitor in parallel with 1 ohm resistor)