Synthesis of Transfer Functions of 2 -port n/w with 1

ohm terminated Load

- L-C Networks with zeros at $\mathrm{S}=0$ or $\mathrm{s}=\infty$
- Steps to be followed
- 1. Identify no of zeros of transfer function and where they are located. $\mathrm{S}=0$ or $\mathrm{s}=\boldsymbol{\infty}$.
- 2. Identify the circuit (LP filter or HP filter) or how L \& C located.
- 3. Identify $N(s)$ of $Z_{21}(s) / Y_{21}(s)$ whether Even or Odd.
- 4. Segregate $D(s)$ of $Z_{21}(s) / Y_{21}(s)$ into Even and Odd parts .
- 5. Express $Z_{21}(s) / Y_{21}(s)$ as $z_{21}(s) \quad y_{21}(s)$

$$
\begin{aligned}
& Z_{21}=-\cdots \quad \text { or } Y_{21}= \\
& 1+z_{22}(s) \quad 1+y_{22}(s)
\end{aligned}
$$

(Divide $N(s) \& D(s)$ By even part if $N(s)$ is odd and by odd part if $N(s)$ is even)
6. Synthesise $z_{22}(s)$ or $y_{22}(s)$ as Ladder network starting from 1 ohm side.
7. NOTE: If $Z_{21}(s)$ has all ZEROS at $S=\infty$ only then CAUER - I NETWORK.

If $Z_{21}(s)$ has all ZEROS AT $S=0$ only then CAUER - II NETWORK

Synthesis with 1 ohm termination

- $Z_{21}(s)=1 /\left(S^{3}+3 s^{2}+3 s+2\right)$
- 1. No of zeros of transmission $=3$ and are at s
$=\infty$
- 2. Identify the L-C circuit as LP filter. Circuit shown in next slide

Synthesis with 1 ohm termination

- 3. Identify $N(s)$ of $Z_{21}(s)$ as Even or odd. $Z_{21}(s)=1 /\left(S^{3}+3 s^{2}+3 s+2\right)$

In this case Even.
4. $D(s)$ of $Z_{21}(s)$

Even part $\quad 3 s^{2}+2$
Odd part $\quad S^{3}+3 s$
5. $Z_{21}(s)=1 /\left(S^{3}+3 s\right)$

$$
z_{21}(s)
$$

$$
1+\left(3 s^{2}+2\right) /\left(s^{3}+3 s\right) \quad 1+z_{22}(s)
$$

$$
z_{21}(s)=1 /\left(s^{3}+3 s\right) \quad \text { and } z_{22}(s)=\left(3 s^{2}+2\right) /\left(S^{3}+3 s\right)
$$

6. Synthesize $z_{22}(s)$ in Ladder n / w to have three zeros at $s=\infty$ USE CAUER - I NETWORK
(Degree of Denominator higher, so invert .First element will be shunt element C and y_{22}. from 1 ohm side)

Synthesis with 1 ohm termination

- $Y_{21}(s)=1 /\left(S^{3}+2 s^{2}+2 s+1\right)$
- 1. No of zeros of transmission $=3$ and are at s
$=\infty$
- 2. Identify the L-C circuit as LP filter.

Synthesis with 1 ohm termination

- $Z_{21}(s)=S^{3} /\left(S^{3}+3 s^{2}+4 s+2\right)$
- 1. No of zeros of transmission $=3$ and are at s
$=0$
- 2. Identify the L-C circuit as HP filter.

Circuit shown in next slide

Synthesis with 1 ohm termination

- 3. Identify $N(s)$ of $Z_{21}(s)$ as Even or odd. $Z_{21}(s)=S^{3} /\left(S^{3}+3 s^{2}+4 s+2\right)$ In this case Odd .

4. $D(s)$ of $Z_{21}(s)$

Even part $\quad 3 s^{2}+2$
Odd part $S^{3}+4 s$
5. $Z_{21}(s)=S^{3} /\left(3 s^{2}+2\right)$

$$
z_{21}(s)=S^{3} /\left(3 s^{2}+2\right) \quad \text { and } \quad z_{22}(s)=\left(S^{3}+4 s\right) /\left(3 s^{2}+2\right)
$$

6. Synthesize $z_{22}(s)$ in Ladder n / w to have three zeros at $s=0$ USE CAUER -II NETWORK $z_{22}(s)=\left(4 s+s^{3}\right) /\left(2+3 s^{2}\right)$
(Degree of Denominator Lower, so invert .First element will be shunt element L and y_{22}. from 1 ohm side. Y_{2}, z_{3} and y_{4} respectively)

Synthesis with 1 ohm termination

- $Y_{21}(s)=S^{3} /\left(S^{3}+3 s^{2}+3 s+2\right)$
- 1. No of zeros of transmission $=3$ and are at s
= 0
- 2. Identify the L-C circuit .

Synthesis with 1 ohm termination

- 3. Identify $N(s)$ of $Y_{21}(s)$ as Even or odd. $Y_{21}(s)=S^{3} /\left(S^{3}+3 s^{2}+3 s+2\right)$ In this case Odd .

4. $D(s)$ of $Z_{21}(s)$

Even part $3 s^{2}+2$
Odd part $S^{3}+3 s$
5. $Y_{21}(s)=S^{3} /\left(3 s^{2}+2\right)$

$$
1+\left(S^{3}+3 s\right) /\left(3 s^{2}+2\right) \quad 1+y_{22}(s)
$$

$$
y_{21}(s)=s^{3} /\left(3 s^{2}+2\right) \quad \text { and } \quad y_{22}(s)=\left(S^{3}+3 s\right) /\left(3 s^{2}+2\right)
$$

6. Synthesize $y_{22}(s)$ in Ladder n / w to have three zeros at $s=0$ USE CAUER -II NETWORK $z_{22}(s)=\left(4 s+s^{3}\right) /\left(2+3 s^{2}\right)$
(Degree of Denominator Lower, so invert .First element will be series element C and y_{22} from 1 ohm side Z_{2}, Y_{3} and Z_{4} respectively)

Synthesis with 1 ohm termination

- $\mathrm{Y}_{21}(\mathrm{~s})=\mathrm{S}^{2} /\left(\mathrm{S}^{3}+3 \mathrm{~s}^{2}+4 \mathrm{~s}+2\right)$
- 1. Two zeros of transmission are at $\mathrm{s}=0$ and one at $s=\infty$
- 2. Identify the L-C circuit .This is neither as HP filter and nor as LP filter type circuit.
- 3. Identify $N(s)$ of $Z_{21}(s)$ as Even or odd. $Z_{21}(s)=S^{2} /\left(S^{3}+3 s^{2}+4 s+2\right)$ In this case Even

4. $D(s)$ of $Y_{21}(s)$

Even part $3 s^{2}+2$
Odd part $S^{3}+4 s$

$6 \quad y_{22}(\mathrm{~s})=\left(3 \mathrm{~s}^{2}+2\right) / \mathrm{s}\left(\mathrm{s}^{2}+4 \mathrm{~s}\right)$.
7. A parallel inductor gives a zero of transmission at $s=0$

Synthesis with 1 ohm termination

- $y_{22}(s)=\left(3 s^{2}+2\right) / s\left(s^{2}+4 s\right)$.

$$
\begin{aligned}
& =(1 / 2 s)+(5 s / 2) /\left(s^{2}+4\right) \\
& =(1 / 2 s)+1 /[(2 / 5) s+(8 / 5) s] \\
& =Y_{A}+Y_{B}
\end{aligned}
$$

$Y_{A}=(1 / 2 s)$ represents an inductance of 2 H
$Y_{B}=1 /[(2 / 5) s+(8 / 5) s]=1 / Z_{B}$
or Z_{B} represents that it is a combination of two elements in series which give zeros at $s=0$ and at $s=\infty$

These give an inductor of $(2 / 5) \mathrm{H}$ and a capacitor of $(5 / 8) \mathrm{F}$
overall network as looked from 1 ohm side is shown on the next slide.

Synthesis with 1 ohm termination

- $Y_{21}(s)=1 /\left(s^{3}+2 s^{2}+2 s+1\right)$
$T-n / w$ series branches $L=(3 / 2) H$ and $(1 / 2) H$. Shunt branch (4/3) F
- $Y_{21}(s)=s^{3} /\left(s^{3}+3 s^{2}+3 s+2\right)$
$\mathrm{T}-\mathrm{n} / \mathrm{w}$ series branches $\mathrm{C}=(3 / 7) \mathrm{F}$ and (3/2) F . Shunt branch (7/9) H
- $\mathrm{z}_{21}(\mathrm{~s})=\mathrm{s} /\left(\mathrm{s}^{3}+3 \mathrm{~s}^{2}+3 \mathrm{~s}+2\right)$
$(9 / 7) \mathrm{H}$ in series with (7/6) F with (1/3)F capacitor in parallel with 1 ohm resistor

