Transfer Functions, Zeros of Transmission and Network Synthesis with 1 ohm Terminations

TRANSFER FUNCTIONS

- Properties of Transfer Functions [T(s)]
- (I) $\mathrm{T}(\mathrm{s})$ is real for real s. This property is satisfied when $\mathrm{T}(\mathrm{s})$ is a rational function with real coefficients.
(II)(a) T (s) has no poles in the right half of s-plane
(b) There are no multiple poles on the jw axis.
(c) If $\mathrm{T}(\mathrm{s})=\mathrm{P}(\mathrm{s}) / \mathrm{Q}(\mathrm{s})$, then the degree of numerator
polynomial $\mathrm{P}(\mathrm{s})$ cannot exceed the degree of denominator
$Q(s)$ by more than unity.
(d) $\mathrm{Q}(\mathrm{s})$ must be Hurwitz polynomial.
(III) Suppose P(s) and Q(s) are given in terms of even and odd parts as

$$
\begin{aligned}
& P(s)=M_{1}(s)+N_{1}(s)=\text { even }+ \text { odd and } \\
& Q(s)=M_{2}(s)+N_{2}(s)=\text { even }+ \text { odd }
\end{aligned}
$$

$$
P(s) \quad M_{1}(s)+N_{1}(s)
$$

$$
\text { Then } T(s)=-----\quad=--------------------\quad \text { or }
$$

$$
Q(s) \quad M_{2}(s)+N_{2}(s)
$$

$$
T(j w)=\begin{aligned}
& P(j w) \\
& Q(j w)
\end{aligned}=\quad \begin{aligned}
& M_{1}(j w)+N_{1}(j w) \\
& -------------------{ }_{2}(j w)+N_{2}(j w)
\end{aligned}
$$

Response is an even function in w and the phase response is an odd function in w .
(Already discussed while doing Amplitude and phase responses)

$$
\begin{aligned}
& V_{1}=z_{11} l_{1}+z_{12} l_{2} \\
& V_{2}=z_{21} l_{1}+z_{22} l_{2}
\end{aligned}
$$

$$
I_{1}=y_{11} V_{1}+y_{12} V_{2}
$$

$$
I_{2}=y_{21} V_{1}+y_{22} V_{2}
$$

- $\mathrm{V}_{2} / \mathrm{V}_{1}=\mathrm{z}_{21} / \mathrm{z}_{11}$

Generally there are source and load impedances to be accounted for.

Properties of Transfer Functions (Contd)

- For two port networks,

$$
z_{12}=V_{1} / I_{2} \quad I_{1}=0 \quad \text { and } z_{21}=V_{2} / I_{1} \text { when } I_{2}=0
$$

$\mathrm{V} 2 / \mathrm{V} 1=\mathrm{z}_{21} / \mathrm{z}_{11}$ (in terms of open circuit impedances)
$\mathrm{V} 2 / \mathrm{V} 1=-\mathrm{y}_{21} / \mathrm{y}_{22}$ (in terms of short circuit admittances)
When the network is terminated at output port by a resistance R then the transfer impedance of the overall network is

$$
\begin{aligned}
& Z_{21}=------=-----\quad Z_{21} R \quad\left(V_{2}=-I_{2} R\right) \\
& Y_{21}=-----={ }_{I_{21} G}^{------} \quad\left(V_{2}=-I_{2} R\right)
\end{aligned}
$$

Properties of Transfer Functions (Contd)

- When both the ports are terminated in resistors yhe voltage ratio transfer function $\mathrm{V} 2 / \mathrm{Vg}$ is given by

$V_{g} \quad\left(z_{11}+R_{1}\right)\left(z_{22}+R_{2}\right)-z_{21} z_{12}$
$V_{1}=z_{11} I_{1}+z_{12} I_{2}$
$V_{2}=z_{21} I_{1}+z_{22} I_{2}$
$V_{1}=V_{g}-I_{1} R_{1}$
$V_{2}=-I_{2} R_{2}$
similarly we can describe other transfer functions such as current ratio transfer functions in terms of open and short circuit parameters.

Specific Properties of Open-Circuit and Short-circuit Parameters

- I) The poles of $z_{21}(s)$ are also the poles of $z_{11}(s)$ and $z_{22}(s)$. However, not all the poles of $z_{11}(s)$ and $z_{22}(s)$ are the poles of $z_{21}(s)$.
(II) The poles of $y_{12}(s)$ are also the poles of $y_{11}(s)$ and $y_{22}(s)$. However, not all the poles of $y_{11}(s)$ and $y_{22}(s)$ are the poles of $y_{12}(s)$

Example П- network. Series branch 5F capacitor .Parallel branches $1 / 2 \mathrm{H}$ and $1 / 3 \mathrm{H}$

The y-parameters for this Π - network are

$$
y_{11}(s)=2 / s+5 s, \quad y_{22}(s)=3 / s+5 s, \quad y_{12}(s)=-5 s
$$

It can be (seen that $y_{11}(s)$ and $y_{22}(s)$ have poles at $s=0$ and at $s=\infty$, whereas $y_{12}(s)$ has pole only at $s=\infty$. Thus the property is verified.
(III) Suppose $y_{11}(s), y_{22}(s) \& y_{12}(s)$ all have poles at $s=s_{1}$ Let residue of the poles at s_{1} of the function $y_{11}(s)$ be k_{11}. Let residue of the poles at s_{1} of the function $y_{22}(s)$ be k_{22}. Similarly, let the residue of the poles at s_{1} of the function $y_{12}(s)$ be k_{12}. General property of L-C , R-C ,or R-L two port networks is that $k_{11} k_{22}-k_{12}{ }^{2} \geq 0$ This equation is known as RESIDUE CONDITION

Specific Properties of Open-Circuit and Short-circuit Parameters

General property of L-C , R-C ,or R-L two port networks is that
$k_{11} k_{22}-k_{12}{ }^{2} \geq 0$. This equation is known as RESIDUE CONDITION
Consider the same above example of L-C Π - network whose y-parameters are

$$
y_{11}(s)=2 / s+5 s, \quad y_{22}(s)=3 / s+5 s, \quad y_{12}(s)=-5 s
$$

(i) Corresponding to pole at $\mathrm{s}=\infty$,

$$
\begin{aligned}
& k_{11}=5, \quad k_{22}=5 \text { and } k_{12}=-5 \\
& k_{11} k_{22}-k_{12}{ }^{2}=(5)(5)-(-5)^{2}=0 \text { residue condition is satisfied. }
\end{aligned}
$$

(ii) Corresponding to pole at $\mathrm{s}=0$,

$$
\begin{gathered}
k_{11}=2, \quad k_{22}=3 \text { and } k_{12}=-0 \\
k_{11} k_{22}-k_{12}{ }^{2}=(2)(3)-(0)^{2}=6>0 \text { residue condition is satisfied }
\end{gathered}
$$

Specific Properties of Open-Circuit and Short-circuit Parameters

- Ex: The open -circuit impedance functions of a typical network are

Show that the residue condition is satisfied at the poles at $s= \pm \sqrt{ } 3 / 2 \mathrm{~s}=0$, and at $\mathrm{s}=\infty$
SOLUTION By partial fraction method we have

$$
\begin{aligned}
& Z_{11}=s+1 / 3 s+(8 / 3) / 4\left(s^{2}+3 / 4\right) \\
& Z_{22}=0+s / 2+(3 s / 2) / 4\left(s^{2}+3 / 4\right) \\
& Z_{21}=0+0+2 s / 4\left(s^{2}+3 / 4\right)
\end{aligned}
$$

(i) For the pole at $\mathbf{s}= \pm \sqrt{ } \mathbf{3} / 2$
the residues of $Z_{11,,,} Z_{22}$ and Z_{21} are
$k_{11}=(1 / 4)(8 / 3)=2 / 3, k_{22}=(1 / 4)\left(3 / 20=3 / 8\right.$ and $k_{12}=(1 / 4)(2)=1 / 2$
$k_{11} k_{22}-k_{12}^{2}=(2 / 3)(3 / 8)-(1 / 2)^{2}=(1 / 4)-(1 / 4)=0$
(≥ 0)

Specific Properties of Open-Circuit and Short-circuit Parameters

(ii) For the pole at $s=0$ the residues of $Z_{11,,,} Z_{22}$ and Z_{21} are

$$
\begin{aligned}
& \mathrm{k}_{11}=1 / 3, \mathrm{k}_{22}=0 \text { and } \mathrm{k}_{12}=0 \\
& \mathrm{k}_{11} \mathrm{k}_{22}-\mathrm{k}_{12}^{2}=(1 / 3)(0)-(0)^{2}=0
\end{aligned}
$$

(iii) For the pole at $s=\infty$ the residues of $Z_{11,,,} Z_{22}$ and
Z_{21} are

$$
\begin{aligned}
& \mathrm{k}_{11}=1, \mathrm{k}_{22}=1 / 2 \text { and } \mathrm{k}_{12}=0 \\
& \mathrm{k}_{11} \mathrm{k}_{22}-\mathrm{k}_{12}^{2}=(1)(1 / 2)-(0)^{2}=1 / 2
\end{aligned}
$$

$$
(\geq 0)
$$

Zeroes of Transmission

- A zero of Transmission is a zero of transfer Function. At a zero of transmission, there is a zero output for an input of the same frequency.
- The zeroes of transmission of a 2-port network are defined as the frequencies at which the network results in zero output for a finite input.
- $s=0$ means w= 0 Capacitor in Series behaves open circuit.

$$
1 \text { / cs or } 1 \text { / wc = infinity }
$$

$\mathrm{s}=0$ means $\mathrm{w}=0$ Inductance in parallel branch acts short cct.

$$
\text { Ls or Lw }=0 \text { at } \mathrm{s} / \mathrm{w}=0
$$

At $s=0$ Single L in SHUNT or Single C in SERIES give zero output

Similarly at $S=\infty, C$ in SHUNT arm or L in SERIES arm give Zero output

Zeroes of Transmission (Contd)

- L-C parallel combination in series arm

$$
\begin{gathered}
z(s)=(1 / c s) /\left(s^{2}+1 / L C\right) \text { gives zero output when } z(s)=\infty \\
\quad \text { means open circuit. } \\
\qquad \begin{array}{c}
s^{2}=-1 / L C \\
s= \pm j / \sqrt{ } \text { LC } \\
\text { Zeroes at } \pm \mathrm{j} / \sqrt{ } L C
\end{array}
\end{gathered}
$$

L-C Series combination in shunt arm

$$
\begin{aligned}
z(s) & =L s+1 / c s=\left(s^{2}+1 / L C\right) /(1 / L) s \\
& =0 \text { at } s^{2}=-1 / L C \text { or } s= \pm j / / L C \text { zeros }
\end{aligned}
$$

Zeroes of Transmission (Contd)

- R-C parallel combination in series arm

$$
z(s)=(1 / C) /(s+1 / R C)
$$

$$
=\infty \text { at } s=-(1 / R C) \quad O C, z=\infty
$$

R-C Series combination in shunt arm

$$
\begin{aligned}
z(s) & =(s+1 / R C) /(1 / R) s \\
& =0 \text { at } s=-(1 / R C) \quad s C, z(s)=0
\end{aligned}
$$

R-L Series combination in parallel arm

$$
\begin{aligned}
z(s) & =L s+R=L\{s+R / L\} \\
& =0 \text { at } s=-(R / L)
\end{aligned}
$$

\mathbf{R}-L parallel combination in series arm

$$
\begin{aligned}
z(s) & =(R s) /(s+R / L) \\
& =\infty \text { at } s=-R / L \quad O C, z=\infty
\end{aligned}
$$

Synthesis with 1 ohm termination

- 3. Identify $N(s)$ of $Y_{21}(s)$ as Even or odd. $Y_{21}(s)=1 /\left(S^{3}+2 s^{2}\right.$ $+2 s+1)$ In this case Even.

4. $D(s)$ of $Y_{21}(s)$

Even part $\quad 2 \mathbf{s}^{\mathbf{2}+1}$
Odd part $S^{3}+2 s$
5. $Y_{21}(s)=1 /\left(S^{3}+2 s\right)$
$y_{21}(s)$
$1+\left(2 s^{2}+1\right) /\left(S^{3}+2 s\right) \quad 1+y_{22}(s)$

$$
y_{21}(s)=1 /\left(S^{3}+3 s\right) \quad \text { and } y_{22}(s)=\left(2 s^{2}+1\right) /\left(S^{3}+2 s\right)
$$

6. Synthesize $y_{22}(s)$ in Ladder n / w to have three zeros at $s=\infty$ USE CAUER - I NETWORK
(Degree of Denominator higher, so invert .First element will be series element L and y_{22}. from 1 ohm side)
