Synthesis of R-C Impedance /R-L Admittance Networks

- Properties of R-C Impedance or R-L Admittance Networks
- 1. The poles and zeros lie on the negative real axis including origin of the complex s-plane.
- 2. The poles and zeros interlace (or alternate) along the negative real axis.
- 3. The residues of the poles must be real and positive.
- 4. The singularity nearest to or at the origin must be a pole.

Function $\mathrm{Z}_{\mathrm{R}-\mathrm{C}}(\mathrm{s})$ or $\mathrm{Y}_{\mathrm{R}-\mathrm{L}}(\mathrm{s}) \rightarrow \infty$ with $\mathrm{s} \rightarrow 0$

- 5. The singularity nearest to or at the minus infinity must be a zero.

Function $Z_{R-L}(s)$ or $\mathrm{Y}_{\mathrm{R}-\mathrm{C}}(\mathrm{s}) \rightarrow 0$ with $\mathrm{s} \rightarrow \infty$

- If the following represent $Z_{R-C}(s)$ or $Y_{R-L} N / W$
(a) $\quad F(s)=[(s+1)(s-3)] /[(s+4)(s+8)]$

No (1)
(b) $F(s)=[(s+2)(s+5)] /[s(s+1)]$

No (2)
(c) $\mathrm{F}(\mathrm{s})=[\mathrm{s}(\mathrm{s}+8)] /[(\mathrm{s}+1)(\mathrm{s}+9)]$

No (4)
(d) $F(s)=[(s+1)(s+4)] /[s(s+2)(s+6)] \quad Y e s$

SYNTHESIS OF R-C IMPEDANCES OR R-L ADMITTANCES

Consider the following example.

$$
\begin{equation*}
F(s)=\frac{3(s+2)(s+4)}{s(s+3)} \tag{11.48}
\end{equation*}
$$

The partial fraction expansion of the remainder function is obtained as

$$
\begin{equation*}
F(s)=\frac{8}{s}+\frac{1}{s+3}+3 \tag{11.49}
\end{equation*}
$$

where $F(\infty)=3$. If $F(s)$ is an impedance $\mathrm{Z}(s)$, it must be an $R-C$ impedance and it is realized in the series Foster form in Fig. 11.16. On the other hand, if $F(s)$ represents an admittance, we realize $Y(s)$ as an $R-L$ network in the parallel Foster form (Fig. 11.17).

Cont...

FIG. 11.16

FIG. 11.17

Cont。

For example, the continued fraction expansion of $F(s)$ in Eq. 11.48 is

$$
\begin{aligned}
& \left.s^{2}+3 s\right) \overline{3 s^{2}+18 s+24(3} \\
& \frac{3 s^{2}+9 s}{9 s+24) s^{2}+3 s\left(\frac{1}{9} s\right.} \\
& \frac{s^{2}+\frac{8}{3} s}{\left.\frac{1}{3} s\right) 9 s+24(27}
\end{aligned}
$$

Cont..

If $F(s)$ is an impedance $Z(s)$, the resulting network is shown in Fig. 11.18. If $F(s)$ is an admittance $Y(s)$, we have the $R-L$ network of Fig. 11.19.

FIG. II.I8

FIG. II.I9

PROPERTIES OF R-L IMPEDANCES AND R-C ADMITTANCES

The immittance that represents a series Foster $R-L$ impedance or a parallel Foster $R-C$ admittance is given as

$$
\begin{equation*}
F(s)=K_{\infty} s+K_{0}+\frac{K_{i} s}{s+\sigma_{i}}+\cdots \tag{11.50}
\end{equation*}
$$

The significant difference between an $R-C$ impedance and an $R-L$ impedance is that the partial fraction expansion term for the $R-C$ "tank" circuit is $K_{i} /\left(s+\sigma_{i}\right)$; whereas, for the R - L impedance, the corresponding term must be multiplied by an s in order to give an $R-L$ tank circuit consisting of a resistor in parallel with an inductor.

The properties of $R-L$ impedance or $R-C$ admittance functions can be derived in much the same manner as the properties of $R-C$ impedance functions. Without going into the derivation of the properties, the more signiificant ones are given in the following:

1. Poles and zeros of an R-L impedance or $R-C$ admittance are located on the negative real axis, and they alternate.
2. The singularity nearest to (or at) the origin is a zero. The singularity nearest to (or at) $s=\infty$ must be a pole.
3. The residues of the poles must be real and negative.

Cont.

Because of the third property, a partial fraction expansion of an $R-L$ impedance function would yield terms as

$$
\begin{equation*}
-\frac{K_{i}}{s+\sigma_{i}} \tag{11.51}
\end{equation*}
$$

This does not present any trouble, however, because the term above does not represent an R - L impedance at all. To obtain the Foster form of an R - L impedance, we will resort to the following artifice. Let us first expand $Z(s) / s$ into partial fractions. If $Z(s)$ is an $R-L$ impedance, we will state without proof here that the partial fraction expansion of $Z(s) / s$ yields positive residues. ${ }^{5}$ Thus, we have

$$
\begin{equation*}
\frac{Z(s)}{s}=\frac{K_{0}}{s}+K_{\infty}+\frac{K_{i}}{s+\sigma_{i}}+\cdots \tag{11.52}
\end{equation*}
$$

