Hybrid (H) Parameter

- The third possible set of parameters is known as hybrid parameters or h-parameters.
- The input and output terminal current and voltage can be presented as follow:

 $(V_1, I_2) = f(I_1, V_2)$

$$\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$
$$V_1 = h_{11}I_1 + h_{12}V_2$$
$$I_2 = h_{21}I_1 + h_{22}V_2$$
Where $h = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$

These parameters are very useful in analyzing the transistor compare to the z-parameters and y-parameters.

Case –I Assuming the output of the two port to be short circuit, $V_2 = 0$

short circuit input impedance

short circuit forward current gain

Case –II Assuming the input of the same two port to be open circuit, $I_1 = 0$

Circuit based on π network

Y-Parameters into A.BCD parameters $(I_1, I_2) = f(V_1, V_2) = [Y](V_1)$ [Y] $\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{Y}_{11} & \mathbf{Y}_{12} \\ \mathbf{Y}_{21} & \mathbf{Y}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix}$ $I_1 = Y_{11}V_1 + Y_{12}Y_2 - (1)$ $I_2 = Y_{21}V_1 + Y_{22}Y_2 - (2)$ $(V_1, I_1) = f(V_2, -I_2)$ [T] or [ABCD] $V_1 = AV_2 + B(-I_2) - (3)$ $I_{1} = C Y_{2} + D (-I_{2}) - C$ Aim is to express A, B, C, D in terms of Y11, Y12 Y21 4 Y22 Convert @ & @ in tom of 3 & @ , Equation @ can be conthen as

$$V_{1} = -\frac{Y_{22}}{Y_{21}} \quad Y_{2} + \frac{1}{Y_{21}} \quad I_{2}$$

$$a \quad Y_{1} = -\frac{Y_{12}}{Y_{24}} \quad Y_{2} - \frac{1}{Y_{24}} \quad (-I_{2}) \quad (5)$$

$$comparing \quad with \quad eq (3) \quad we have$$

$$\left[A = -\frac{Y_{22}}{Y_{24}}\right] \quad & B = -\frac{1}{Y_{24}}$$

$$B_{1} = -\frac{Y_{12}}{Y_{24}} \quad & B = -\frac{1}{Y_{24}}$$

$$B_{1} = -\frac{Y_{11}Y_{22} - Y_{12}Y_{24}}{Y_{24}} \quad & Y_{2} - \frac{Y_{11}}{Y_{24}} \quad (-I_{2}) - O$$

$$V_{21} \quad & V_{21} \quad (-I_{2}) - O$$

$$V_{21} \quad & V_{21} \quad we have$$

$$C = -\frac{Y_{11}Y_{22} - Y_{12}Y_{24}}{Y_{24}} \quad & D = -\frac{Y_{11}}{Y_{24}}$$
Similarly we can get (Y) in terms & (A BeD)

RELATIONSHIPS BETWEEN PARAMETER SETS Conte

I parameters in terms of Y parameters $(V_1, V_2) = f(I_1, I_2)$ $\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$ $[\mathbf{I}] = [\mathbf{Z}][\mathbf{I}]$ $V_1 = Z_{11} I_1 + Z_{12} I_2 - (1)$ $V_2 = Z_{21} I_1 + Z_{22} I_2 - (R)$ $(I_1, I_2) = f(V_1, V_2)$ $\begin{bmatrix} \mathbf{I}_{1} \\ \mathbf{I}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{Y}_{11} & \mathbf{Y}_{12} \\ \mathbf{Y}_{21} & \mathbf{Y}_{12} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1} \\ \mathbf{V}_{2} \end{bmatrix}$ (I] - (Y) [V]

I, - Y11 V1 + Y12 V2 - (3) I2 = Y21 V1 + Y22 V2 - CY $[\mathbf{V}] = [\mathbf{Z}] [\mathbf{I}]$ $\mathbf{I} = [Y][V]$ $[\mathbf{I}] = [\mathbf{Y}] [\mathbf{V}]$ [Y-'][I]=[Y][Y] [I] (Z] [V] - (Z] [Z] (y'3[]=[V] = []7 [][]=[V] (I] - [z] [V] ~ (xi = [z] =[Y][V] & [z] = [y] -' on [z] = [Y]-1 ·· [Y] -[Z] [Z11 Z12] - [Y11 Y12 [Z21 Z22] - [Y21 Y22 $\begin{bmatrix} Y_{10} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$

 $(I_1, I_2) = + (V_1, V_2)$ $(V_1, V_2) = f(I_1, I_2)$ $I_{1} = Y_{11} V_{1} + Y_{12} V_{2} - (3)$ $V_{1} = Z_{11}I_{1} + Z_{12}I_{2} - (1) \times Z_{22}$ $V_{2} = Z_{21}I_{1} + Z_{22}I_{2} - (2) \times Z_{12}$ $I_2 = Y_{21}Y_1 + Y_{22}V_2 - (9)$ $V_{1} Z_{22} = Z_{11} Z_{22} \overline{J}_{1} + Z_{12} Z_{22} \overline{J}_{2}$ $V_{2} Z_{12} = Z_{21} \overline{Z}_{12} \overline{J}_{1} + Z_{12} \overline{Z}_{22} \overline{J}_{2}$ V1 Z22 - 42 Z14 = I1 (Z11 Z22 - Z21 Z12) $T_{1} = \frac{Z_{22}}{Z_{11}Z_{24}-Z_{12}Z_{21}} \bigvee_{1} = \frac{Z_{12}}{Z_{11}Z_{24}-Z_{12}Z_{21}} \bigvee_{2}$ $T_{1} = \frac{T_{12}}{\Delta z} V_{1} + \frac{-Z_{12}}{\Delta z} V_{2}$ Comparing with of 31 II = Y11 + Y12 12

we have where AZ = Zu Zu - ZuZy Y11 = Z22 Similarly by eliminating I, between (1) of (11) we get $Y_{21} = -\frac{Z_{21}}{AZ}$ Z22 47 $\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{23} \end{bmatrix}^{2} \begin{bmatrix} \frac{Z_{11}}{\Delta z} & -\frac{Z_{12}}{\Delta z} \\ -\frac{Z_{21}}{\Delta z} & \frac{Z_{22}}{\Delta z} \end{bmatrix} or \begin{bmatrix} Y \end{bmatrix}^{2} = \frac{1}{\Delta z} \begin{bmatrix} Z_{11} & -Z_{12} \\ -Z_{21} & Z_{22} \end{bmatrix}$

$$b_{21} = \frac{1}{z_{12}} = -\frac{\Delta y}{y_{12}} = \frac{a_{21}}{\Delta a} = \frac{h_{22}}{h_{12}} = -\frac{g_{11}}{g_{12}}$$

$$b_{22} = \frac{z_{11}}{z_{12}} = \frac{y_{22}}{y_{12}} = \frac{a_{11}}{\Delta a} = \frac{\Delta h}{h_{12}} = -\frac{1}{g_{12}}$$

$$h_{11} = \frac{\Delta z}{z_{22}} = \frac{1}{y_{11}} = \frac{a_{12}}{a_{22}} = \frac{b_{12}}{b_{11}} = \frac{g_{22}}{\Delta g}$$

$$h_{12} = \frac{z_{12}}{z_{22}} = -\frac{y_{12}}{y_{11}} = \frac{\Delta a}{a_{22}} = \frac{1}{b_{11}} = -\frac{g_{12}}{\Delta g}$$

$$h_{21} = -\frac{z_{21}}{z_{22}} = \frac{y_{21}}{y_{11}} = -\frac{1}{a_{22}} = -\frac{\Delta b}{b_{11}} = -\frac{g_{21}}{\Delta g}$$

$$h_{22} = \frac{1}{z_{22}} = \frac{\Delta y}{y_{11}} = \frac{a_{21}}{a_{22}} = \frac{b_{21}}{b_{11}} = \frac{g_{11}}{\Delta g}$$

$$g_{11} = \frac{1}{z_{11}} = \frac{\Delta y}{y_{22}} = \frac{a_{21}}{a_{11}} = \frac{b_{21}}{b_{22}} = \frac{h_{22}}{\Delta h}$$

$$g_{12} = -\frac{z_{12}}{z_{11}} = \frac{y_{12}}{y_{22}} = -\frac{\Delta a}{a_{11}} = -\frac{1}{b_{22}} = -\frac{h_{12}}{\Delta h}$$

$$g_{21} = \frac{z_{21}}{z_{11}} = -\frac{y_{21}}{y_{22}} = \frac{1}{a_{11}} = \frac{\Delta b}{b_{22}} = -\frac{h_{21}}{\Delta h}$$

$$g_{22} = \frac{\Delta z}{z_{11}} = \frac{1}{y_{22}} = \frac{a_{12}}{a_{11}} = \frac{b_{12}}{b_{22}} = \frac{h_{11}}{\Delta h}$$

$$\Delta z = z_{11}z_{22} - z_{12}z_{21}$$

$$\Delta y = y_{11}y_{22} - y_{12}y_{21}$$

$$\Delta a = a_{11}a_{22} - a_{12}a_{21}$$

$$\Delta b = b_{11}b_{22} - b_{12}b_{21}$$

$$\Delta h = h_{11}h_{22} - h_{12}h_{21}$$

$$\Delta g = g_{11}g_{22} - g_{12}g_{21}$$

INTERCONNECTION OF TWO-PORT NETWORKS

Three ways that two ports are interconnected:

Interconnections permit the description of complex systems in terms of simpler components or subsystems

The basic interconnections to be considered are: *parallel, series and cascade*

Find the equivalent y-parameters for the bridge T-network

the z-parameters of network N2 are

$$[Z] = \begin{bmatrix} Z_1 + Z_3 & Z_3 \\ Z_3 & Z_2 + Z_3 \end{bmatrix}$$

We can convert the z-parameters to y-parameters

 $y_{11} = \frac{Z_2 + Z_3}{Z_1 Z_2 + Z_1 Z_2 + Z_2 Z_2}$ $y_{12} = \frac{-Z_3}{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3}$ $y_{21} = \frac{-Z_3}{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3}$ $y_{22} = -\frac{Z_1 + Z_3}{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_2}$

$y_{11} = \frac{1}{Z_4}$	$1 \qquad Z_2 + Z_3$
$v_{in} = -\frac{1}{2}$	$y_{11eq} = \overline{Z_4} + \overline{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3}$
$J_{12} Z_4$	$y_{12aa} = -\frac{1}{7} - \frac{Z_3}{77}$
$y_{21} = -\frac{1}{Z_1}$	$Z_4 = Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3$
$v_{22} = \frac{1}{2}$	$y_{21eq} = -\frac{1}{Z_4} - \frac{Z_3}{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3}$
$J_{22} Z_4$	$v_{22ee} = \frac{1}{\pi} + \frac{Z_1 + Z_3}{\pi}$
	$Z_{4} = Z_{1}Z_{2} + Z_{1}Z_{3} + Z_{2}Z_{3}$

SERIES PARALLEL CONNECTION

=[hila+hilb hiza+hilb][I] Lhya+hilb hiza+hilb][V2] $\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_1 & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$ his = history his = hiza + hizb hzia = hzia + hzib h22 = h22a + beeb

The overall h-parameter matrix for Series parallel connected two part networks is ringly the sum of h-parameter matrices of each individual two-part networks connected in Series parallel. Parallel-Series (97) = (92)+(92) Series-Series or Series [2] = [22]+[23] * Series - Series or Series Parallel - Farallel or Parallel $(Y) = (Y_{1}) + (Y_{2})$ * Cascade on Tandem [T] = [Ta] × [T6] 22

CASCADE CONNECTIONS

cascade Connection of Two 2-port Networks output port of one becomes the input port of the Second. [Via] = [Aa Ba][Via] & [Vib] = [Ab Bb][Vib] [Ija] = [Ca Da][-Iza] & [Iib] = [Cb Db][-Izb] $I_1 = I_{12} - I_{22} = I_{12} \qquad I_{22} = I_2$ naw $V_1 = V_1 a$ 12a = 116 425 = V2 $\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} V_1 a \\ I_2 a \end{bmatrix} = \begin{bmatrix} A a & B a \\ C a & D a \end{bmatrix} \begin{bmatrix} V_2 a \\ -I_2 a \end{bmatrix} = \begin{bmatrix} A a & B a \\ C a & D a \end{bmatrix} \begin{bmatrix} V_1 & B \\ I_1 & D \end{bmatrix}$ = [Aa Ba] [Ab Bb] [Veb] [Ca Da] [Cb Db] [-I2b] 23

 $= \begin{bmatrix} An Ba \end{bmatrix} \begin{bmatrix} AL & Bb \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$ $= \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$ A = Aa AG + Bacb $\begin{bmatrix} A & B_2 \end{bmatrix} = \begin{bmatrix} Aa & Ba \end{bmatrix} \begin{bmatrix} Ab & Bb \end{bmatrix} \\ \begin{bmatrix} C & D \end{bmatrix} = \begin{bmatrix} Ca & Da \end{bmatrix} \begin{bmatrix} Cb & Db \end{bmatrix}$ B= AnBL+ BaDL C= Ca Ab + Da G or [T]= [Ta] × [T6] D - Ca Bb + Da Dy The overall T-parameter materix for cascade connected two-port networks is simply the matrix product of the T-parameter matrices of each individual two port network in Cascade. Similarly for inverse transmission Tparameters [T'] = [T'i][Ta']

TWO PORT PARAMETERS

1. Find h parameters in terms of Z-parameters 2 Fuid y parametérs un terms 8 Z- parameters 3 obtain the relationship between Z-parameters & ABCD 4 T Metworks are connected in parallel, parameters the Y parameters of overall network 5. Find ABCD parameters in terms of Z-parameters 6 mid Symmetrical & Reciprocal conditions In Y para-7 Fuid ABCD parameters in terms of hi parameters 8 Derive Equivalent parameters in term of a matter ABCD parameters for a Cascade Connection of 2-part up 2-parameters · Fuid Z parameters of the network Shown 25

REVISION

Z-parometers are also called open cet parameters [/r.
Y-parameters are also called Shat cet parameters
ABCO parameters are also called Transmission (TIF) parameters or T-parameters (T | F) $[Z] = [Y]' (T | F); [V_i] = [Z][I_i]$ [Y] = [Z] (T/F); $\begin{bmatrix} 2 & 4 \\ -3 & 8 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 8 & -4 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} T/F \end{bmatrix}$ $V_1 = 2I_1 + 3I_2$ 42 - 4 I1 + 8 I2 212 = 211 = 221 = 222 =

V₁ = 3V₂ + 6(-I₂)
I_k = 4V₂ + 5(-I₂)
A = B =
C = D =
Home work
Find out Z + Y perameters for which 1A, B, C, D are known above.
'h' or Hybrid parameters '.

6	NVERSION	y of	PARAMETER	S [SUMMARY]
Parameter	7	9n	termo 8	x = X11 X22 - X12X21
Z	Z11 Z12 Z21 Z22	- <u>Y2</u>	$\frac{2}{4} - \frac{y_{12}}{4y}$	$\frac{A}{c}$ $\frac{\Delta T}{c}$
		- 72	Y 44	
Y	<u>Z21</u> <u>AZ</u>	Z12 42	Y12 Yez	DB - AT B
	42	211	421 422	-1 A B
T	Z11 Z21 1 Z21	<u>AZ</u> Z21 Z21 Z21 Z21	$-\frac{Y_{12}}{Y_{21}} - \frac{1}{Y_{21}} $	A B L C D

Find Y 4 Z parameters der abone cct

- · Loop method
- . Parallel networks
- · Y- a conversion