
The Laplace Transform 



The Laplace Transform 

The Laplace Transform of a function, f(t), is defined as; 
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The Inverse Laplace Transform is defined by 
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The Laplace Transform 

Laplace Transform of the unit step. 
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The Laplace Transform of a unit step is: 
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The Laplace Transform 

 The Laplace transform of a unit impulse: 

Pictorially, the unit impulse appears as follows: 

0 t0 

f(t)  (t – t0) 

Mathematically: 

(t – t0) = 0   t   0 
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The Laplace Transform 

 The Laplace transform of a unit impulse: 

An important property of the unit impulse is a sifting 

 or sampling property.  The following is an important. 
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The Laplace Transform 

 The Laplace transform of a unit impulse: 

In particular, if we let f(t) = (t) and take the Laplace 
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The Laplace Transform 

An important point to remember: 
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The above is a statement that f(t) and F(s) are  

transform pairs.  What this means is that for  

each f(t) there is a unique F(s) and for each F(s) 

there is a unique f(t).   If we can remember the 

Pair relationships between approximately 10 of the  

Laplace transform pairs we can go a long way. 



The Laplace Transform 

Building transform pairs: 
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The Laplace Transform 

Building transform pairs: 
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The Laplace Transform 

Building transform pairs: 
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The Laplace Transform 

Time Shift 
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The Laplace Transform 

Frequency Shift 
















0

)(

0

)()(

)]([)]([

asFdtetf

dtetfetfeL

tas

statat

)()]([ asFtfeL at 



The Laplace Transform 

Example:  Using Frequency Shift 

Find the L[e-atcos(wt)] 

In this case, f(t) = cos(wt) so, 
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The Laplace Transform 

Time Integration: 

The property is: 
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The Laplace Transform 

Time Integration: 

Making these substitutions and carrying out 

The integration shows that 
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The Laplace Transform 

Time Differentiation: 

If the L[f(t)] = F(s), we want to show: 
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The Laplace Transform 

Time Differentiation: 

Making the previous substitutions gives, 
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The Laplace Transform 

Time Differentiation: 

We can extend the previous to show; 
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The Laplace Transform 

Transform Pairs: 

____________________________________
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        f(t)                             F(s) 

1

2

!

1

1

1
)(

1)(







n

n

st

s

n
t

s
t

as
e

s
tu

t



The Laplace Transform 

Transform Pairs: 

        f(t)                             F(s) 
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The Laplace Transform 

Transform Pairs: 

        f(t)                             F(s) 
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The Laplace Transform 

Common Transform Properties: 

f(t) F(s) 
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The Laplace Transform 

Initial Value Theorem: Example: 

Given; 
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The Laplace Transform 

Theorem: Final Value Theorem: 

If the function f(t) and its first derivative are Laplace transformable and f(t) 

has the Laplace transform F(s), and the                 exists, then )(lim ssF
s

)()(lim)(lim  ftfssF
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Again, the utility of this theorem lies in not having to take the inverse 

of F(s) in order to find out the final value of f(t) in the time domain.   

This is particularly useful in  circuits and systems. 

Final Value 

Theorem 



The Laplace Transform 

Final  Value Theorem: Example: 

Given: 
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