The Laplace Transform

The Laplace Transform

The Laplace Transform of a function, $f(t)$, is defined as;

$$
L[f(t)]=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \quad E q \text { A }
$$

The Inverse Laplace Transform is defined by

$$
L^{-1}[F(s)]=f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{t s} d s \quad \mathrm{Eq} \mathrm{~B}
$$

The Laplace Transform

Laplace Transform of the unit step.

$$
\boldsymbol{L}[\boldsymbol{u}(\boldsymbol{t})]=\int_{0}^{\infty} 1 \boldsymbol{e}^{-s t} d \boldsymbol{t}=\left.\frac{-1}{\boldsymbol{s}} \boldsymbol{e}^{-s t}\right|_{0} ^{\infty}
$$

$$
L[u(t)]=\frac{1}{s}
$$

The Laplace Transform of a unit step is:

1

The Laplace Transform

The Laplace transform of a unit impulse:
Pictorially, the unit impulse appears as follows:

Mathematically:

$$
\delta\left(\mathbf{t}-\mathbf{t}_{\mathbf{0}}\right)=\mathbf{0} \quad \mathbf{t} \neq \mathbf{0}
$$

$$
\int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \delta\left(t-t_{0}\right) d t=1 \quad \varepsilon>0
$$

The Laplace Transform

The Laplace transform of a unit impulse:

An important property of the unit impulse is a sifting or sampling property. The following is an important.

$$
\int_{t_{1}}^{t_{2}} f(t) \delta\left(t-t_{0}\right) d t=\left\{\begin{array}{lr}
f\left(t_{0}\right) & t_{1}<t_{0}<t_{2} \\
0 & t_{0}<t_{1}, t_{0}>t_{2}
\end{array}\right.
$$

The Laplace Transform

The Laplace transform of a unit impulse:

In particular, if we let $f(t)=\delta(t)$ and take the Laplace

$$
L[\delta(t)]=\int_{0}^{\infty} \delta(t) e^{-s t} d t=e^{-0 s}=1
$$

The Laplace Transform

An important point to remember:

$$
f(t) \Leftrightarrow F(s)
$$

The above is a statement that $f(t)$ and $F(s)$ are transform pairs. What this means is that for each $f(t)$ there is a unique $F(s)$ and for each $F(s)$ there is a unique $f(t)$. If we can remember the Pair relationships between approximately 10 of the Laplace transform pairs we can go a long way.

The Laplace Transform

Building transform pairs:

$L\left[e^{-a t} u(t)\right]=\int_{0}^{\infty} e^{-a t} e^{-s t} d t=\int_{0}^{\infty e} e^{-(s+a) t} d t$

$$
L\left[e^{-a t} u(t)\right]=\left.\frac{-e^{-s t}}{(s+a)}\right|_{0} ^{\infty}=\frac{1}{s+a}
$$

A transform

The Laplace Transform

Building transform pairs:

The Laplace Transform

Building transform pairs:

$$
\begin{aligned}
\boldsymbol{L}[\cos (\boldsymbol{w})] & =\int_{0}^{\infty} \frac{\left(\boldsymbol{e}^{j w t}+\boldsymbol{e}^{-j w t}\right)}{2} \boldsymbol{e}^{-s t} d \boldsymbol{t} \\
& =\frac{1}{2}\left[\frac{1}{\boldsymbol{s}-\boldsymbol{j} \boldsymbol{w}}-\frac{1}{s+\boldsymbol{j} \boldsymbol{w}}\right] \\
& =\frac{\boldsymbol{s}}{\boldsymbol{s}^{2}+\boldsymbol{w}^{2}}
\end{aligned}
$$

$$
\cos (\boldsymbol{w} \boldsymbol{t}) \boldsymbol{u}(\boldsymbol{t}) \quad \Leftrightarrow \quad \frac{\boldsymbol{s}}{\boldsymbol{s}^{2}+\boldsymbol{w}^{2}}
$$

A transform pair

The Laplace Transform

Time Shift

$$
\begin{array}{|l}
L[f(t-a) u(t-a)]=\int_{a}^{\infty} f(t-a) e^{-s t} \\
\text { Let } x=t-a, \text { then } d x=d t \text { and } t=x+a \\
\text { As } t \rightarrow a, x \rightarrow 0 \text { and as } t \rightarrow \infty, x \rightarrow \infty . \text { So, } \\
\int_{0}^{\infty} f(x) e^{-s(x+a)} d x=e^{-a s} \int_{0}^{\infty} f(x) e^{-s x} d x \\
\hline L[f(t-a) u(t-a)]=e^{-a s} F(s)
\end{array}
$$

The Laplace Transform

Frequency Shift

$$
\begin{aligned}
& L\left[e^{-a t}\right.f(t)]=\int_{0}^{\infty}\left[e^{-a t} f(t)\right] e^{-s t} d t \\
& \quad=\int_{0}^{\infty} f(t) e^{-(s+a) t} d t=F(s+a)
\end{aligned}
$$

$$
L\left[e^{-a t} f(t)\right]=F(s+a)
$$

The Laplace Transform

Example: Using Frequency Shift

Find the $\mathrm{L}\left[\mathrm{e}^{-\mathrm{at}} \cos (\mathrm{wt})\right]$

In this case, $f(t)=\cos (w t)$ so,

$$
\begin{aligned}
& F(s)=\frac{s}{s^{2}+w^{2}} \\
& \text { and } F(s+a)=\frac{(s+a)}{(s+a)^{2}+w^{2}}
\end{aligned}
$$

$$
L\left[e^{-a t} \cos (w t)\right]=\frac{(\boldsymbol{s}+\boldsymbol{a})}{(\boldsymbol{s}+\boldsymbol{a})^{2}+(w)^{2}}
$$

The Laplace Transform

Time Integration:

The property is:

$$
L\left[\int_{0}^{\infty} f(t) d t\right]=\int_{0}^{\infty}\left[\int_{0}^{t} f(x) d x\right] e^{-s t} d t
$$

Integrate by parts :

$$
\text { Let } u=\int_{0}^{t} f(x) d x, \quad d u=f(t) d t
$$

and

$$
d v=e^{-s t} d t, \quad v=-\frac{1}{s} e^{-s t}
$$

The Laplace Transform

Time Integration:

Making these substitutions and carrying out The integration shows that

$$
\begin{aligned}
L\left[\int_{0}^{\infty} f(t) d t\right] & =\frac{1}{s} \int_{0}^{\infty} f(t) e^{-s t} d t \\
& =\frac{1}{s} F(s)
\end{aligned}
$$

The Laplace Transform

Time Differentiation:

If the $L[f(t)]=F(s)$, we want to show:

$$
L\left[\frac{d f(t)}{d t}\right]=s F(s)-f(0)
$$

Integrate by parts:

$$
\begin{aligned}
& u=e^{-s t}, d u=-s e^{-s t} d t \text { and } \\
& d v=\frac{d f(t)}{d t} d t=d f(t), \text { so } v=f(t)
\end{aligned}
$$

The Laplace Transform

Time Differentiation:

Making the previous substitutions gives,

$$
\begin{aligned}
L\left[\frac{d f}{d t}\right] & =\left.f(t) e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty} f(t)\left[-s e^{-s t}\right] d t \\
& =0-f(0)+s \int_{0}^{\infty} f(t) e^{-s t} d t
\end{aligned}
$$

So we have shown:

$$
L\left[\frac{d f(t)}{d t}\right]=s F(s)-f(0)
$$

The Laplace Transform

Time Differentiation:

We can extend the previous to show;

$$
\begin{aligned}
& L\left[\frac{d f(t)^{2}}{d t^{2}}\right]=s^{2} F(s)-s f(0)-f^{\prime}(0) \\
& L\left[\frac{d f(t)^{3}}{d t^{3}}\right]=s^{3} F(s)-s^{2} f(0)-s f^{\prime}(0)-f^{\prime \prime}(0)
\end{aligned}
$$

general case

$$
\begin{gathered}
L\left[\frac{d f(t)^{n}}{d t^{n}}\right]=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0) \\
-\ldots-f^{(n-1)}(0)
\end{gathered}
$$

The Laplace Transform

Transform Pairs:

$f(t)$	$F(s)$
$\delta(t)$	1
$u(t)$	$\frac{1}{s}$
$e^{-s t}$	$\frac{1}{s+a}$
t	$\frac{1}{s^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$

The Laplace Transform

Transform Pairs:

$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$
$t e^{-a t}$	$\frac{1}{(s+a)^{2}}$
$t^{n} e^{-a t}$	$\frac{n!}{(s+a)^{n+1}}$
$\sin (w t)$	$\frac{w}{s^{2}+w^{2}}$
$\cos (w t)$	$\frac{s}{s^{2}+w^{2}}$

The Laplace Transform

Transform Pairs:

The Laplace Transform

Common Transform Properties:

$f(t)$
$f\left(t-t_{0}\right) u\left(t-t_{0}\right), t_{0} \geq 0$
$f(t) u\left(t-t_{0}\right), t \geq 0$
$e^{-a t} f(t)$
$\frac{d^{n} f(t)}{d t^{n}}$
$t f(t)$
$\int_{0}^{t} f(\lambda) d \lambda$

F(s)

$$
\begin{aligned}
& e^{-t_{0} s} F(s) \\
& e^{-t_{o} s} L\left[f\left(t+t_{0}\right)\right. \\
& \quad F(s+a) \\
& s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-s^{0} f^{n-1} f(0) \\
& \quad-\frac{d F(s)}{d s} \\
& \frac{1}{s} F(s)
\end{aligned}
$$

The Laplace Transform

Example: Initial Value Theorem:
Given;

$$
F(s)=\frac{(s+2)}{(s+1)^{2}+5^{2}}
$$

Find f(0)

$$
\begin{aligned}
f(0) & =\lim _{s \rightarrow \infty} s F(s)=\lim _{s \rightarrow \infty} s \frac{(s+2)}{(s+1)^{2}+5^{2}}=\lim _{s \rightarrow \infty}\left[\frac{s^{2}+2 s}{s^{2}+2 s+1+25}\right] \\
& =\lim _{s \rightarrow \infty} \frac{s^{2} / s^{2}+2 s / s^{2}}{s^{2} / s^{2}+2 s / s^{2}+\left(26 / s^{2}\right)}=1
\end{aligned}
$$

The Laplace Transform

Theorem: Final Value Theorem:

If the function $f(t)$ and its first derivative are Laplace transformable and $f(t)$ has the Laplace transform $F(s)$, and the $\lim _{s \rightarrow \infty} s F(s)$ exists, then

$$
\lim _{s \rightarrow 0} s F(s)=\lim _{t \rightarrow \infty} f(t)=f(\infty) \quad \begin{aligned}
& \text { Final Value } \\
& \text { Theorem }
\end{aligned}
$$

Again, the utility of this theorem lies in not having to take the inverse of $F(s)$ in order to find out the final value of $f(t)$ in the time domain. This is particularly useful in circuits and systems.

The Laplace Transform

Example: Final Value Theorem:

Given:

$$
F(s)=\frac{(s+2)^{2}-3^{2}}{\left[(s+2)^{2}+3^{2}\right]} \quad \text { note } F^{-1}(s)=t e^{-2 t} \cos 3 t
$$

Find $f(\infty)$.

$$
f(\infty)=\lim _{s \rightarrow 0} s F(s)=\lim _{s \rightarrow 0} \frac{(s+2)^{2}-3^{2}}{\left.s(s+2)^{2}+3^{2}\right]}=0
$$

