Operations on

Continuous-Time Signals

Continuous-Time Signals

- Continuous-Time Signals
- Time is a continuous variable
- The signal itself need not be continuous
- We will look at several common continuous-time signals and also operations that may be performed on them

Unit Step Function $\rightarrow \mathrm{u}(\mathrm{t})$

$$
u(t)= \begin{cases}1 & t \geq 0 \\ 0 & t<0\end{cases}
$$

- Used to characterize systems
-We will use $u(t)$ to illustrate the properties of continuous-time signals

Operations of CT Signals

1. Time Reversal

$$
y(t)=x(-t)
$$

2. Time Shifting

$$
y(t)=B x(t)
$$

3. Amplitude Scaling $y(t)=B x(t)$
4. Addition

$$
y(t)=x_{1}(t)+x_{2}(t)
$$

5. Multiplication

$$
y(t)=x\left(t-t_{d}\right)
$$

$$
y(t)=x_{1}(t) x_{2}(t)
$$

6. Time Scaling

$$
y(t)=x(a t)
$$

1. Time Reversal

- Flips the signal about the y axis
- $\mathrm{y}(\mathrm{t})=\mathrm{x}(-\mathrm{t})$
ex. Let $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})$, and perform time reversal
Solution: Find $y(t)=u(-t)$
Let "a" be the argument of the step function $\rightarrow \mathrm{u}(\mathrm{a})$
$u(a)= \begin{cases}1 & a \geq 0 \\ 0 & a<0\end{cases}$
Let $a=-t$, and plug in this value of " a "
$u(-t)= \begin{cases}1 & t \leq 0 \\ 0 & t>0\end{cases}$

2. Time Shifting / Delay

- $y(t)=x\left(t-t_{d}\right)$
- Shifts the signal left or right
- Shifts the origin of the signal to t_{d}
- Rule \rightarrow Set $\left(t-t_{d}\right)=0$ (set the argument equal to zero)
\rightarrow Then move the origin of $x(t)$ to t_{d}
- Effectively, $y(t)$ equals what $x(t)$ was t_{d} seconds ago

3. Amplitude Scaling

- Multiply the entire signal by a constant value
- $y(t)=B x(t)$
ex. Sketch $y(t)=5 u(t)$

4. Addition of Signals

- Point-by-point addition of multiple signals
- Move from left to right (or vice versa), and add the value of each signal together to achieve the final signal
- $\mathrm{y}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})$
- Graphical solution
- Plot each individual portion of the signal (break into parts)
- Add the signals point by point

4. Addition of Signals

ex. Sketch $y(t)=u(t)-u(t-2)$
First, plot each of the portions of this signal separately

- $\mathrm{x}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t})$
\rightarrow Simply a step signal
- $\mathrm{x}_{2}(\mathrm{t})=-\mathrm{u}(\mathrm{t}-2) \quad \rightarrow$ Delayed step signal, multiplied by -1

Then, move from one side to the other, and add their instantaneous values

5. Multiplication of Signals

- Point-by-point multiplication of the values of each signal
- $\mathrm{y}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t}) \mathrm{x}_{2}(\mathrm{t})$
- Graphical solution
- Plot each individual portion of the signal (break into parts)
- Multiply the signals point by point

5. Multiplication of Signals

$e x$. Sketch $y(t)=u(t) \cdot u(t-2)$

First, plot each of the portions of this signal separately

```
- \(\mathrm{x}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \quad \rightarrow\) Simply a step signal
- \(\mathrm{x}_{2}(\mathrm{t})=\mathrm{u}(\mathrm{t}-2) \quad \rightarrow\) Delayed step signal
```

Then, move from one side to the other, and multiply instantaneous values

6. Time Scaling

- Speed up or slow down a signal
- Multiply the time in the argument by a constant
- $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{at})$
$|a|>1 \quad \rightarrow \quad$ Speed up $x(t)$ by a factor of "a"
$|\mathrm{a}|<1 \rightarrow \quad$ Slow down $\mathrm{x}(\mathrm{t})$ by a factor of "a"
- Key \rightarrow Replace all instances of " t " with "at"

6. Time Scaling

ex. Let $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2)$
Sketch $y(t)=x(2 t)$

Replace all t's with 2 t

First, plot $x(t)$

This has effectively "sped up" $x(t)$ by a factor of 2 (What occurred at $t=2$ now occurs at $t=2 / 2=1$)

6. Time Scaling

ex. Let $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2)$
Sketch $y(t)=x(t / 2)$

Replace all t's with t/2
$\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t} / 2)=\mathrm{u}(\mathrm{t} / 2)-\mathrm{u}(\mathrm{t} / 2)-2)$

First, plot $x(t)$

This has effectively "slowed down" $x(t)$ by a factor of 2 (What occurred at $\mathrm{t}=1$ now occurs at $\mathrm{t}=2$)

Combinations of Operations

- Combinations of operations on signals
- Easier to Determine the final signal in stages
- Create intermediary signals in which one operation is performed

ex. Time Scale and Time Shift

Let $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}+2)-\mathrm{u}(\mathrm{t}-4)$
Sketch $\mathrm{y}(\mathrm{t})=\mathrm{x}(2 \mathrm{t}-2)$
Can perform either operation first

Method $1 \rightarrow$ Shift then scale
Let $\mathrm{v}(\mathrm{t})=\mathrm{x}(\mathrm{t}-\mathrm{b}) \rightarrow$ Time shifted version of $\mathrm{x}(\mathrm{t})$
Then $\mathrm{y}(\mathrm{t})=\mathrm{v}(\mathrm{at})=\mathrm{x}(\mathrm{at}-\mathrm{b})$
Replace " t " with the argument of " v "
Match up "a" and "b" to what is given in the problem statement

$$
\text { at }-\mathrm{b}=2 \mathrm{t}-2
$$

(Match powers of t)

$$
\begin{aligned}
& a=2 \\
& b=2
\end{aligned}
$$

Therefore, shift by 2, then scale by 2

ex. Time Scale and Time Shift

Let $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}+2)-\mathrm{u}(\mathrm{t}-4)$ Sketch $\mathrm{y}(\mathrm{t})=\mathrm{x}(2 \mathrm{t}-2)$

Can perform either operation first

Method $2 \rightarrow$ Scale then shift
Let $\mathrm{v}(\mathrm{t})=\mathrm{x}(\mathrm{at}) \rightarrow$ Time scaled version of $\mathrm{x}(\mathrm{t})$
Then $\mathrm{y}(\mathrm{t})=\mathrm{v}(\mathrm{t}-\mathrm{b})=\mathrm{x}(\mathrm{a}(\mathrm{t}-\mathrm{b}))=\mathrm{x}(\mathrm{at}-\mathrm{ab})$
Replace " t " with the argument of " v "
Match up "a" and "b" to what is given in the problem statement

$$
a t-a b=2 t-2
$$

(Match powers of t)

$$
a=2 \quad 2, \text { then shift by } 1
$$

$$
a b=2, b=1
$$

Therefore, scale by

ex. Time Scale and Time Shift

- Note - The results are the same
- Note - The value of b in Method 2 is a scaled version of the time delay
$-t_{d}=2$
- Time scale factor $=2$
- New scale factor $=2 / 2=1$

