Operations on Continuous-Time Signals

Continuous-Time Signals

- Continuous-Time Signals
 - Time is a continuous variable
 - The signal itself need not be continuous

 We will look at several common continuous-time signals and also operations that may be performed on them

- Used to characterize systems
- We will use u(t) to illustrate the properties of continuous-time signals

Operations of CT Signals

- 1. Time Reversal
- 2. Time Shifting
- 3. Amplitude Scaling
- 4. Addition
- 5. Multiplication
- 6. Time Scaling

y(t) = x(-t) $y(t) = x(t-t_d)$ y(t) = Bx(t) $y(t) = x_1(t) + x_2(t)$ $y(t) = x_1(t)x_2(t)$ y(t) = x(at)

1. Time Reversal

- Flips the signal about the y axis
- y(t) = x(-t)

ex. Let x(t) = u(t), and perform time reversal

<u>Solution</u>: Find y(t) = u(-t)

Let "a" be the argument of the step function \rightarrow u(a)

$$u(a) = \begin{cases} 1 & a \ge 0\\ 0 & a < 0 \end{cases}$$

Let a = -t, and plug in this value of "a"

$$u(-t) = \begin{cases} 1 & t \le 0\\ 0 & t > 0 \end{cases}$$

2. Time Shifting / Delay

- $y(t) = x(t t_d)$
- Shifts the signal left or right
- Shifts the origin of the signal to t_d
- Rule → Set (t t_d) = 0 (set the argument equal to zero)

 \rightarrow Then move the origin of x(t) to t_d

Effectively, y(t) equals what x(t) was t_d seconds ago

3. Amplitude Scaling

- Multiply the entire signal by a constant value
- y(t) = Bx(t)

ex. Sketch y(t) = 5u(t)

4. Addition of Signals

- Point-by-point addition of multiple signals
- Move from left to right (or vice versa), and add the value of each signal together to achieve the final signal
- $y(t) = x_1(t) + x_2(t)$
- Graphical solution
 - Plot each individual portion of the signal (break into parts)
 - Add the signals point by point

4. Addition of Signals

ex. Sketch y(t) = u(t) - u(t - 2)

First, plot each of the portions of this signal separately

• $x_1(t) = u(t)$ \rightarrow Simply a step signal • $x_2(t) = -u(t-2)$ \rightarrow Delayed step signal, multiplied by -1

> Then, move from one side to the other, and add their instantaneous values

5. Multiplication of Signals

- Point-by-point multiplication of the values of each signal
- $y(t) = x_1(t)x_2(t)$
- Graphical solution
 - Plot each individual portion of the signal (break into parts)
 - Multiply the signals point by point

5. Multiplication of Signals

ex. Sketch $y(t) = u(t) \cdot u(t-2)$

First, plot each of the portions of this signal separately

- $x_1(t) = u(t)$ \rightarrow Simply a step signal
- $x_2(t) = u(t-2)$ \rightarrow Delayed step signal

6. Time Scaling

- Speed up or slow down a signal
- Multiply the time in the argument by a constant
- y(t) = x(at)
 - $|a| > 1 \rightarrow$ Speed up x(t) by a factor of "a"
 - $|a| < 1 \rightarrow$ Slow down x(t) by a factor of "a"
- Key → Replace all instances of "t" with "at"

6. Time Scaling

This has effectively "sped up" x(t) by a factor of 2 (What occurred at t=2 now occurs at t=2/2=1)

6. Time Scaling

This has effectively "slowed down" x(t) by a factor of 2 (What occurred at t=1 now occurs at t=2)

Combinations of Operations

- Combinations of operations on signals
 - Easier to Determine the final signal in stages
 - Create intermediary signals in which one operation is performed

ex. Time Scale and Time Shift

Let x(t) = u(t + 2) - u(t - 4)x(t) Sketch y(t) = x(2t - 2)Can perform either operation first -2 -1 1 234 t Method 1 \rightarrow Shift then scale Let $v(t) = x(t - b) \rightarrow$ Time shifted version of x(t)v(t) = x(t - 2)Then y(t) = v(at) = x(at - b)Replace "t" with the argument of "v" 2 3 4 5 6 t Match up "a" and "b" to what is given in the problem statement y(t) = v(2t) = x(2t - 2)at - b = 2t - 2Therefore, shift by 2, (Match powers of t) then scale by 2 a = 223 4 5 6 1 t b = 2

ex. Time Scale and Time Shift

Let x(t) = u(t + 2) - u(t - 4)Sketch y(t) = x(2t - 2)

Can perform either operation first

Method 2 \rightarrow Scale then shift Let v(t) = x(at) \rightarrow Time scaled version of x(t) Then y(t) = v(t - b) = x(a(t - b)) = x(at - ab) Replace "t" with the argument of "v" Match up "a" and "b" to what is given in the problem statement at - ab = 2t - 2 (Match powers of t) Therefore, scale by a = 2 2, then shift by 1 ab = 2, b = 1

ex. Time Scale and Time Shift

- Note The results are the same
- Note The value of b in Method 2 is a scaled version of the time delay
 - $-t_{d} = 2$
 - Time scale factor = 2
 - New scale factor = 2/2 = 1