
Series RLC Network
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Objective of Lecture
 Derive the equations that relate the voltages across a 

resistor, an inductor, and a capacitor in series as:
 the unit step function associated with voltage or current 

source changes from 1 to 0 or
 a switch disconnects a voltage or current source into the 

circuit.
 Describe the solution to the 2nd order equations when 

the condition is:
 Overdamped
 Critically Damped
 Underdamped
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Series RLC Network
 With a step function voltage source.
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Boundary Conditions
 You must determine the initial condition of the 

inductor and capacitor at t < to and then find the final 
conditions at t = ∞s.
 Since the voltage source has a magnitude of 0V at t < to

 i(to
-) = iL(to

-) = 0A and vC(to
-) = Vs 

 vL(to
-) = 0V and iC(to

-) = 0A
 Once the steady state is reached after the voltage source 

has a magnitude of Vs at t > to, replace the capacitor with 
an open circuit and the inductor with a short circuit.
 i(∞s) = iL(∞s) = 0A and vC(∞s) = 0V 
 vL(∞s) = 0V and iC(∞s) = 0A
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Selection of Parameter
 Initial Conditions

 i(to
-) = iL(to

-) = 0A and vC(to
-) = Vs 

 vL(to
-) = 0V and iC(to

-) = 0A
 Final Conditions

 i(∞s) = iL(∞s) = 0A and vC(∞s) = oV
 vL(∞s) = 0V and iC(∞s) = 0A

 Since the voltage across the capacitor is the only 
parameter that has a non-zero boundary condition, 
the first set of solutions will be for vC(t).
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Kirchhoff’s Voltage Law
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General Solution
Let vC(t) = AesDt
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Solve for Coefficients A1 and A2
 Use the boundary conditions at to

- and t = ∞s to solve 
for A1 and A2.

 Since the voltage across a capacitor must be a 
continuous function of time.

 Also know that
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Overdamped Case
 a  wo

 implies that C > 4L/R2

s1 and s2 are negative and real numbers
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Critically Damped Case
 a  wo

 implies that C = 4L/R2

s1 = s2 = - a = -R/2L
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Underdamped Case
 a < wo

 implies that C < 4L/R2

 , i is used by the mathematicians for 
imaginary numbers 
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Angular Frequencies
 wo is called the undamped natural frequency

 The frequency at which the energy stored in the 
capacitor flows to the inductor and then flows back to 
the capacitor.  If R = 0W, this will occur forever.

 wd is called the damped natural frequency
 Since the resistance of R is not usually equal to zero, 

some energy will be dissipated through the resistor as 
energy is transferred between the inductor and 
capacitor. 
 a determined the rate of the damping response.
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Properties of RLC network
 Behavior of RLC network is described as damping, 

which is a gradual loss of the initial stored energy
 The resistor R causes the loss
 a determined the rate of the damping response

 If R = 0, the circuit is loss-less and energy is shifted back and 
forth between the inductor and capacitor forever at the 
natural frequency.  

 Oscillatory response of a lossy RLC network is possible 
because the energy  in the inductor and capacitor can be 
transferred from one component to the other.
 Underdamped response is a damped oscillation, which is 

called ringing. 
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Properties of RLC network
 Critically damped circuits reach the final steady state 

in the shortest amount of time as compared to 
overdamped and underdamped circuits.
 However, the initial change of an overdamped or 

underdamped circuit may be greater than that obtained 
using a critically damped circuit.
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Set of Solutions when t > to
 There are three different solutions which depend on 

the magnitudes of the coefficients of the            and    
the          terms.  
 To determine which one to use, you need to calculate the 

natural angular frequency of the series RLC network and 
the term a.
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Transient Solutions when t > to
 Overdamped response (a > wo)

 Critically damped response (a = wo)

 Underdamped response (a < wo)
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Find Coefficients
 After you have selected the form for the solution based 

upon the values of wo and a
 Solve for the coefficients in the equation by evaluating 

the equation at t = to
- and t = ∞s using the initial and 

final boundary conditions for the voltage across the 
capacitor.
 vC(to

-) = Vs
 vC(∞s) = oV
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Other Voltages and Currents
 Once the voltage across the capacitor is known, the 

following equations for the case where t > to can be 
used to find:
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Solutions when t < to
 The initial conditions of all of the components are the 

solutions for all times -∞s < t < to.
 vC(t) = Vs
 iC(t) = 0A

 vL(t) = 0V
 iL(t) = 0A

 vR(t) = 0V
 iR(t) = 0A

24



Summary
 The set of solutions when t > to for the voltage across the 

capacitor in a RLC network in series was obtained.
 Selection of equations is determine by comparing the natural 

frequency wo to a.
 Coefficients are found by evaluating the equation and its first 

derivation at t = to
- and t = ∞s.

 The voltage across the capacitor is equal to the initial 
condition when t < to

 Using the relationships between current and voltage, the 
current through the capacitor and the voltages and 
currents for the inductor and resistor can be calculated.
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Parallel RLC Network
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Objective of Lecture
 Derive the equations that relate the voltages across a 

resistor, an inductor, and a capacitor in parallel as:
 the unit step function associated with voltage or current 

source changes from 1 to 0 or
 a switch disconnects a voltage or current source into the 

circuit.
 Describe the solution to the 2nd order equations when 

the condition is:
 Overdamped
 Critically Damped
 Underdamped
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RLC Network
 A parallel RLC network where the current source is 

switched out of the circuit at t = to.
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Boundary Conditions
 You must determine the initial condition of the 

inductor and capacitor at t < to and then find the final 
conditions at t = ∞s.
 Since the voltage source has a magnitude of 0V at t < to

 iL(to
-) = Is and v(to

-) = vC(to
-) = 0V 

 vL(to
-) = 0V and iC(to

-) = 0A
 Once the steady state is reached after the voltage source 

has a magnitude of Vs at t > to, replace the capacitor with 
an open circuit and the inductor with a short circuit.
 iL(∞s) = 0A and v(∞s) = vC(∞s) = 0V 
 vL(∞s) = 0V and iC(∞s) = 0A
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Selection of Parameter
 Initial Conditions

 iL(to
-) = Is and v(to

-) = vC(to
-) = 0V 

 vL(to
-) = 0V and iC(to

-) = 0A
 Final Conditions

 iL(∞s) = 0A and v(∞s) = vC(∞s) = oV
 vL(∞s) = 0V and iC(∞s) = 0A

 Since the current through the inductor is the only 
parameter that has a non-zero boundary condition, 
the first set of solutions will be for iL(t).
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Kirchoff’s Current Law
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General Solution
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Note that the equation for the natural frequency of the RLC 
circuit is the same whether the components are in series or in 
parallel.
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Overdamped Case
 a  wo

 implies that L > 4R2C
s1 and s2 are negative and real numbers
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Critically Damped Case
 a  wo

 implies that L = 4R2C
s1 = s2 = - a = -1/2RC
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Underdamped Case
 a < wo

 implies that L < 4R2C

]sincos[)( 21

22

22
2

22
1

tAtAeti

js

js

dd
t

L

od

do

do

DD







D 









36



Other Voltages and Currents
 Once current through the inductor is known:
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Summary
 The set of solutions when t > to for the current through the 

inductor in a RLC network in parallel was obtained.
 Selection of equations is determine by comparing the natural 

frequency wo to a.
 Coefficients are found by evaluating the equation and its first 

derivation at t = to
- and t = ∞s.

 The current through the inductor is equal to the initial 
condition when t < to

 Using the relationships between current and voltage, the 
voltage across the inductor  and the voltages and currents 
for the capacitor and resistor can be calculated.
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