Series RLC Network




/

P
Objective of Lecture

e Derive the equations that relate the voltages across a
resistor, an inductor, and a capacitor In series as:

e the unit step function associated with voltage or current
source changes from 1 to O or

e aswitch disconnects a voltage or current source into the
circuit.

e Describe the solution to the 2"d order equations when
the condition Is:

e Overdamped
e Critically Damped
e Underdamped




Series RLC Network

e \With a step function voltage source.
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Boundary Conditions

e You must determine the initial condition of the
Inductor and capacitor at t < t, and then find the final
conditions at t = oos,

e Since the voltage source has a magnitude of OVatt<t,
I(t,) =1.(t,;) =0Aand v(t,) = Vs
v (t,) =0Vand i.(t,) = 0A

e Once the steady state Is reached after the voltage source

has a magnitude of Vsat t > t, replace the capacitor with
an open circuit and the inductor with a short circuit.

I(c0s) = i, (o0s) = 0A and V(oos) = 0V
V| (ocs) = oV and i-(c°s) = 0A
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Selection of Parameter

e |nitial Conditions
e i(t,) =1.(t;) = 0Aand v.(t,) = Vs
e v (t,) =0V andi.(t,) = 0A
e Final Conditions
¢ i(c0s) =i, (o0s) = 0A and V(oes) = OV
* V,(o0s) = oV and i:(o0s) = 0A

e Since the voltage across the capacitor is the only
parameter that has a non-zero boundary condition,
the first set of solutions will be for v(t).
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Kirchhoff’s Voltage Law
D v(t)=0 o
di, (t)
Vo () +L it +Ri, =0
_~ ave (t)
I.(t)=C i
iL(t) = ic (t)
1cd 2"02(” ey +v,.(t)=0
dt dt
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General Solution

Letve(t) =
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General Solution (con’t)
2 % = g
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General Solution (con’t)

R
Slz—(x+\/a2—a)02 =
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s° +2as+w> =0
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General Solution (con’t)

Vcl(t) = AleslAt
Ve, () = AzeszAt
VC (t) = Vcl(t) + VC2 (t) — AleslAt | AzeszAt




Solve for Coefficients A, and A,

e Use the boundary conditions at t,"and t = oos to solve

for Al and A2. -
Ve (to ) =V

e Since the voltage across a capacitor must be a
continuous function of time.

VC (to_) = VC (to+) = VCl (to+) T VCZ (to+) :VS
Alesl(os)+AzeSZ(OS) S A1+A2 :VS
o : dv t, d
Aloknduthat | gy cfelhl SR ()0,0)1-0
dt dt
5 A +5,Ae2%) =g A 15 A =0
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Overdamped Case

°a >,
e implies that C > 4L/R?
s, and s, are negative and real numbers

VC (t) e AleslAt _l_AZeSZAt
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Critically Damped Case

® o=,
e implies that C = 4L/R?
S;=S,=-a=-R/2L

V. (t) = Ae " + A Ate ™
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Underdamped Case

® o <M,
e implies that C < 4L/R?

S, =— +\/a2 —0F =—a+ jo,

S, = —0f — \/a 0 =—a - jo,
\/a) ~a’

e j=+/-1,iisused by the mathematicians for
Imaginary numbers
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e!’ =cos@+ jsing
e 1’ =cosO— jsin@

Ve (t) = e[ A (cosm At + jsin w At) + A, (COS w, At — jsin w,At)]
Vo (1) =e ™™ [(A + A)cosw,At+ j(A — A,)sin o, At]
V. (t) = e “*[B, cosw, At + jB, sin w, At]

B, =A +A B,=A-A,
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Angular Frequencies

* o, IS called the undamped natural frequency

e The frequency at which the energy stored in the
capacitor flows to the inductor and then flows back to
the capacitor. If R = 0€2, this will occur forever.

* oy IS called the damped natural frequency

e Since the resistance of R is not usually equal to zero,
some energy will be dissipated through the resistor as
energy is transferred between the inductor and
capacitor.

o. determined the rate of the damping response.
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Properties of RLC network

e Behavior of RLC network is described as damping,
which is a gradual loss of the initial stored energy

e The resistor R causes the loss

e o determined the rate of the damping response

If R =0, the circuit is loss-less and energy is shifted back and
forth between the inductor and capacitor forever at the
natural frequency.
e Oscillatory response of a lossy RLC network is possible
because the energy in the inductor and capacitor can be
transferred from one component to the other.

Underdamped response is a damped oscillation, which is
called ringing.
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Properties of RLC network

e Critically damped circuits reach the final steady state
In the shortest amount of time as compared to
overdamped and underdamped circuits.

e However, the initial change of an overdamped or

underdamped circuit may be greater than that obtained
using a critically damped circuit.
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Set of Solutionswhent>t,

e There are three different solutions which depend on
the magnitudes of the coefficients of the dv:(t) and
thev¢(t) terms. dt

e To determine which one to use, you need to calculate the

natural angular frequency of the series RLC network and
the term a.
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Transient Solutions when t > t,

e Overdamped response (o > ®,)

where At =t—t,

VC (t) i AieslAt _I_AzeSzAt

s 0 o

e 2 2
S, ——a—\/a — 0}

e Critically damped response (o = m,)

Ve (t) = (A + A, At)e™

e Underdamped response (a < m,)

_\/ o
Wy =40, -

V. (t) =[ A, cos(m,At) + A, sin(w,At)]e™
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Find Coefficients

e After you have selected the form for the solution based
upon the values of o, and a
e Solve for the coefficients in the equation by evaluating
the equation at t = t," and t = oos using the initial and

final boundary conditions for the voltage across the
capacitor.

VC(to_) = Vs
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Other Voltages and Currents

e Once the voltage across the capacitor is known, the
following equations for the case where t > t, can be
used to find:

dve (1)
dt
1(t) =1 (1) =1, (1) =1 (t)
_ o di (1)
v (t)=L .
Vi (t) = RiR(t)

0 ¢
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Solutions when t <t

e The initial conditions of all of the components are the
solutions for all times -cos < t < t,,.

o V(1) = Vs
e ic(t) =0A

e v () =0V
e i () =0A

e Vp(t) =0V
* ix(t) = 0A
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Summary

e The set of solutions when t > t_for the voltage across the
capacitor in a RLC network in series was obtained.

e Selection of equations is determine by comparing the natural
frequency o, to a.

o Coefficients are found by evaluating the equation and its first
derivationatt=t, and t = oos.
e The voltage across the capacitor is equal to the initial
conditionwhen t < t,
e Using the relationships between current and voltage, the
current through the capacitor and the voltages and
currents for the inductor and resistor can be calculated.
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Parallel RLC Network
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Objective of Lecture

e Derive the equations that relate the voltages across a
resistor, an inductor, and a capacitor in parallel as:

e the unit step function associated with voltage or current
source changes from 1 to O or

e aswitch disconnects a voltage or current source into the
circuit.

e Describe the solution to the 2"d order equations when
the condition Is:

e Overdamped
e Critically Damped
e Underdamped
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RLC Network

e A parallel RLC network where the current source is
switched out of the circuitatt =t,.

+ Ir I Ic
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Boundary Conditions

e You must determine the initial condition of the
Inductor and capacitor at t < t, and then find the final
conditions at t = oos,

e Since the voltage source has a magnitude of OV att < t,
I, (t,) =Isand v(t,) = v(t,) = OV
v (t,;) =0Vand i (t,) = 0A

e Once the steady state Is reached after the voltage source

has a magnitude of Vsat t > t, replace the capacitor with
an open circuit and the inductor with a short circuit.

I, (c0s) = 0A and v(oos) = V(o0s) = OV
V| (o0s) = 0V and i-(ocs) = 0A
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Selection of Parameter

e Initial Conditions
e i (t,) =Isand v(t,)) = v.(t,) = 0V
e v (t,) =0V andi.(t,) = 0A
e Final Conditions
¢ i (o0s) = 0A and v(cos) = V(o0s) = 0V
* V,(o0s) = oV and i:(o0s) = 0A

e Since the current through the inductor is the only
parameter that has a non-zero boundary condition,
the first set of solutions will be for i (t).
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Kirchoff’s Current Law

/

i (t)+i, (t)+i.(t)=0 -
V(t) =vi (M) =v () =V (1) §R

VR (t) + iL (t) = C dVC (t) i =
R dt

D _
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L
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v (t)=v(t)=L o

2- :
.
dt R dt
NG NCIRACHP
dt RC dt LC
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General Solution




s° +2as+w. =0

Note that the equation for the natural frequency of the RLC
circuit is the same whether the components are in series or in
parallel.
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Overdamped Case

® o>,
e implies that L > 4R°C
s, and s, are negative and real numbers

iL1 (t) = AleslAt
iLz(t) = AzeszAt
At =t—t,

iL (t) - iLl(t) a5 iLz(t) = AleslAt | Azeszm
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Critically Damped Case

® o=,
e implies that L = 4R°C
S,=S,=-a=-1/2RC

i|_ (t) - Ale—aAt AzAte—aAt




Underdamped Case

® o <M,
e implies that L < 4R°C

R 2 2R 2
Sl——(x+\/a -, =—0+ Jo,

s 2 L -
S, ——a—\/(x -0 =—0 — Jay,

o 2 2
0y —\/a)o -

i, (1) =e*[A cosw,At + A, sin w,At]




Other Voltages and Currents

e Once current through the inductor is known:

_p A ()
v (t)=L "

Vi (1) = Ve (t) = Vg (t)
- av (Y

1. (t)=C =

I, (1) =V, (1)/R
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Summary

e The set of solutions when t > t_for the current through the
Inductor in a RLC network in parallel was obtained.

e Selection of equations is determine by comparing the natural
frequency o, to a.

o Coefficients are found by evaluating the equation and its first
derivationatt=t, and t = oos.
e The current through the inductor is equal to the initial
conditionwhen t < t,
e Using the relationships between current and voltage, the
voltage across the inductor and the voltages and currents
for the capacitor and resistor can be calculated.
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