SECOND ORDER CIRCUIT

SECOND ORDER CIRCUIT

- Revision of $1^{\text {st }}$ order circuit
- Second order circuit
- Natural response (source-free)
- Forced response

Revision of $1^{\text {st }}$ order circuit

NATURAL RESPONSE (SOURCE-FREE)

- initial energy in capacitor
- i.e. $v_{C}(0)=V_{o}$

Solution: $\quad \mathrm{KCL} \Rightarrow \quad \mathrm{i}_{\mathrm{C}}+\mathrm{i}_{\mathrm{R}}=0$

$$
\Rightarrow \quad \frac{d v_{\mathrm{C}}}{\mathrm{dt}}+\frac{\mathrm{v}_{\mathrm{C}}}{\mathrm{RC}}=0
$$

Solving this first order differential equation gives:

$$
v_{C}(t)=V_{o} e^{-t / R C}
$$

Revision of $1^{\text {st }}$ order circuit

FORCED RESPONSE

- no initial energy in capacitor
- i.e. $v_{C}(0)=0$

Solution: $\quad \mathrm{KCL} \Rightarrow \quad \mathrm{i}_{\mathrm{C}}+\mathrm{i}_{\mathrm{R}}=0$

$$
\Rightarrow C \frac{d v_{C}}{d t}+\frac{v_{C}-V_{s}}{R}=0 \Rightarrow \frac{d v_{C}}{d t}+\frac{v_{C}}{R C}=\frac{V_{s}}{R C}
$$

Solving this first order differential equation gives:

$$
v_{C}(t)=V_{s}\left(1-e^{-t / R C}\right)
$$

Revision of $1^{\text {st }}$ order circuit

COMPLETE RESPONSE

Complete response $=$ natural response + forced response

$$
\begin{gathered}
v(t)=v_{n}(t)+v_{f}(t) \\
v_{C}(t)=V_{o} e^{-t / R C}+V_{s}\left(1-e^{-t / R C}\right)
\end{gathered}
$$

Complete response $=$ Steady state response + transient response

$$
\begin{gathered}
v(t)=v_{s s}(t)+v_{t}(t) \\
v_{c}(t)=V_{s}+\left(V_{o}-V_{s}\right) e^{-t / R c}
\end{gathered}
$$

Revision of $1^{\text {st }}$ order circuit

COMPLETE RESPONSE

In general, this can be written as:

$$
x(t)=x(\infty)+[x(0)-x(\infty)] e^{-t / \tau}
$$

- can be applied to voltage or current
- $x(0)$: initial value

$$
v_{c}(t)=V_{s}+\left(V_{o}-V_{s}\right) e^{-t / R c}
$$

- $x(\infty)$: steady state value

For the $2^{\text {nd }}$ order circuit, we are going to adopt the same approach

Before we begin

To successfully solve $\mathbf{2}^{\text {nd }}$ order equation, need to know how to get the initial condition and final values CORRECTLY

INCORRECT initial conditions /final values will result in a wrong

 solutionIn $1^{\text {st }}$ order circuit

- need to find initial value of inductor current (RL circuit) OR capacitor voltage (RC circuit): $i_{L}(0)$ or $v_{C}(0)$
- Need to find final value of inductor current OR capacitor voltage: $i_{L}(\infty)$ or $v_{C}(\infty)$

In $2^{\text {nd }}$ order circuit

- need to find initial values of i_{L} and/or $v_{C}: i_{L}(0)$ or $v_{C}(0)$
- Need to find final values of inductor current and/or capacitor voltage: $i_{L}(\infty), v_{C}(\infty)$
- Need to find the initial values of first derivative of i_{L} or $v_{C}: \mathrm{d} i_{L}(0) / \mathrm{d} t$ $\mathrm{d} v_{C}(0) / \mathrm{d} t$

Finding initial and final values

Example

Switch closed for a long time and open at $\mathrm{t}=0$. Find:

$$
\begin{aligned}
& i\left(0^{+}\right), v\left(0^{+}\right), \\
& d i\left(0^{+}\right) / d t, d v\left(0^{+}\right) / d t, \\
& i(\infty), v(\infty)
\end{aligned}
$$

Finding initial and final values

Find:

$$
\begin{aligned}
& i_{L}\left(0^{+}\right), v_{C}\left(0^{+}\right), v_{R}\left(0^{+}\right) \\
& d i_{L}\left(0^{+}\right) / d t, d v_{C}\left(0^{+}\right) / d t, d v_{R}\left(0^{+}\right) / d t, \\
& i_{L}\left({ }^{\infty}\right), v_{C}(\infty), v_{R}\left({ }^{\infty}\right)
\end{aligned}
$$

Second order circuit

Natural Response of Series RLC Circuit (Source-Free Series RLC Circuit)

We want to solve for $\mathrm{i}(\mathrm{t})$.

Applying KVL,

$$
\mathrm{Ri}+\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\frac{1}{\mathrm{C}} \int_{-\infty}^{\mathrm{t}} \mathrm{i} d t=0
$$

Differentiate once,

$$
R \frac{d i}{d t}+L \frac{d^{2} i}{d t^{2}}+\frac{i}{C}=0
$$

$$
\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}+\frac{\mathrm{R}}{\mathrm{~L}} \frac{\mathrm{di}}{\mathrm{dt}}+\frac{\mathrm{i}}{\mathrm{LC}}=0 \quad \underset{\text { with constant coefficients }}{\Leftarrow} \text { This is a second order differential equation }
$$

Second order circuit

Assuming $i(t)=A e^{s t}$

$$
\begin{aligned}
& A s^{2} e^{s t}+\frac{A R}{L} s e^{s t}+\frac{A}{L C} e^{s t}=0 \\
& A e^{s t}\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)=0
\end{aligned}
$$

Since $\mathrm{Ae}^{\text {st }}$ cannot become zero,

$$
\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}+\frac{\mathrm{R}}{\mathrm{~L}} \frac{\mathrm{di}}{\mathrm{dt}}+\frac{\mathrm{i}}{\mathrm{LC}}=0
$$

This is known as the CHARACTERISTIC EQUATION of the diff. equation

Second order circuit

Solving for s,

$$
s_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}} \quad s_{2}=-\frac{R}{2 L}-\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
$$

Which can also be written as

$$
\begin{aligned}
& \mathrm{s}_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}} \\
& \text { where } \alpha=\frac{R}{2 L}, \quad \quad \omega_{0}=\frac{1}{\sqrt{\text { LC }}} \\
& \left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)=0 \\
& \begin{array}{r}
\mathrm{s}_{1}, \mathrm{~s}_{2}-\text { known as natural frequencies (nepers/s) } \\
\alpha-\text { known as neper frequency, } \quad \omega_{0}-\text { known as resonant frequency }
\end{array}
\end{aligned}
$$

Second order circuit

$$
i(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}
$$

A_{1} and A_{2} are determined from initial conditions

Case 1

$$
\alpha>\omega_{0}
$$

Case 2 Overdamped solution

$$
\begin{gathered}
\mathrm{s}_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}} \\
\alpha=\omega_{0}
\end{gathered}
$$

$$
s_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}}
$$

Critically damped solution

Case 3

$\alpha<\omega_{\text {。 }}$
Underdamped solution

