## Differential Equations

Ordinary. An ordinary differential equation is one in which there is only one independent variable (in our case, $t$ ). As a result there is no need for partial derivatives.

Constant coefficients. The coefficients $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ are constant, independent of the variable $t$.

Linear. A differential equation is linear if it contains only terms of the first degree in $x(t)$ and all its higher derivatives, as given by Eq. 4.3. For example, the equation

$$
3 x^{\prime}(t)+2 x(t)=\sin t
$$

is a linear differential equation. On the other hand,

$$
3\left[x^{\prime}(t)\right]^{2}+2 x(t) x^{\prime}(t)+4 x(t)=5 t
$$

is nonlinear, because the terms $\left[x^{\prime}(t)\right]^{2}$ and $x(t) x^{\prime}(t)$ are nonlinear by the definition just given.

## Homogeneous linear differential equation

First, let us find the solution to the equation

$$
\begin{equation*}
x^{\prime}(t)-2 x(t)=0 \tag{4.8}
\end{equation*}
$$

Now, with a little prestidigitation, we assume the solution to be of the form

$$
\begin{equation*}
x(t)=C e^{2 t} \tag{4.9}
\end{equation*}
$$

where $C$ is any arbitrary constant. Let us check to see whether $x(t)=C e^{2 t}$ is truly a solution of Eq. 4.8. Substituting the assumed solution in Eq. 4.8, we obtain

$$
\begin{equation*}
2 C e^{2 t}-2 C e^{2 t}=0 \tag{4.10}
\end{equation*}
$$

It can be shown, in general, that the solutions of homogeneous, linear differential equations consist of exponential terms of the form $C_{i}{ }^{p_{i} t}$. To obtain the solution of any differential equation, we substitute $C e^{p t}$ for $x(t)$ in the equation and determine those values of $p$ for which the equation is zero. In other words, given the general equation

$$
\begin{equation*}
a_{n} x^{(n)}(t)+\cdots+a_{1} x^{\prime}(t)+a_{0} x(t)=0 \tag{4.11}
\end{equation*}
$$

we let $x(t)=C e^{p t}$, so that Eq. 4.11 becomes

$$
\begin{equation*}
C e^{p t}\left(a_{n} p^{n}+a_{n-1} p^{n-1}+\cdots+a_{1} p+a_{0}\right)=0 \tag{4.12}
\end{equation*}
$$

Since $e^{p t}$ cannot be zero except at $p=-\infty$, the only nontrivial solutions for Eq. 4.12 occur when the polynomial

$$
\begin{equation*}
H(p)=a_{n} p^{n}+a_{n-1} p^{n-1}+\cdots+a_{1} p+a_{0}=0 \tag{4.13}
\end{equation*}
$$

Equation 4.13 is often referred to as the characteristic equation, and is denoted symbolically in this discussion as $H(p)$. The characteristic equation is zero only at its roots. Therefore, let us factor $H(p)$ to give

$$
\begin{equation*}
H(p)=a_{n}\left(p-p_{0}\right)\left(p-p_{1}\right) \cdots\left(p-p_{n-1}\right) \tag{4.14}
\end{equation*}
$$

From Eq. 4.14, we note that $C_{0} e^{p_{0} t}, C_{1} e^{p_{1} t}, \ldots, C_{n-1} 1^{p_{n-1}^{1}}$ are all solutions of Eq. 4.11. By the superposition principle, the total solution is a linear combination of all the individual solutions. Therefore, the total solution of the differential equation is

$$
\begin{equation*}
x(t)=C_{0} e^{p_{0} t}+C_{1} e^{p_{1} t}+\cdots+C_{n-1} e^{p_{n-1} t} \tag{4.15}
\end{equation*}
$$

Example 4.1 Find the solution for

$$
\begin{equation*}
x^{*}(t)+5 x^{\prime}(t)+4 x(t)=0 \tag{4.17}
\end{equation*}
$$

given the initial conditions

$$
x(0+)=2 \quad x^{\prime}(0+)=-1
$$

Solution. From the given equation, we first obtain the characteristic equation
which factors into

$$
\begin{equation*}
H(p)=p^{2}+5 p+4=0 \tag{4.18}
\end{equation*}
$$

The roots of the characteristic equation (referred to here as characteristic values) are $p=-1 ; p=-4$. Then $x(t)$ takes the form

$$
\begin{equation*}
x(t)=C_{1} e^{-t}+C_{2} e^{-4 t} \tag{4,20}
\end{equation*}
$$

From the initial condition $x(0+)=2$, we obtain the equation

$$
\begin{equation*}
x(0+)=2=C_{1}+C_{2} \tag{4.21}
\end{equation*}
$$

In order to solve for $C_{1}$ and $C_{2}$ explicitly, we need the additional initial condition $x^{\prime}(0+)=-1$. Taking the derivative of $x(t)$ in Eq. 4.20, we have

$$
\begin{equation*}
x^{\prime}(t)=-C_{1} e^{-t}-4 C_{2} e^{-4 t} \tag{4.22}
\end{equation*}
$$

At $t=0+, x^{\prime}(t)$ is

$$
\begin{equation*}
x^{\prime}(0+)=-1=-C_{1}-4 C_{2} \tag{4,23}
\end{equation*}
$$

Solving Eqs. 4.21 and 4.23 simultaneously, we find that

$$
\begin{equation*}
C_{1}=\frac{7}{3} \quad C_{2}=-\frac{1}{3} \tag{4.24}
\end{equation*}
$$

Thus the final solution is $\quad x(t)=\frac{7}{3} e^{-t}-\frac{1}{3} e^{-4 t}$

## Roots of $H(p)$

## Forms of Solution

$e^{p_{0} t}$
$C_{0} e^{p_{1} t}+C_{1} t e^{p_{1} t}+\cdots+C_{k-1} t^{k-1} e^{p_{1} t}$
$M_{2} e^{\sigma t} \cos \omega t+M_{2} e^{o t} \sin \omega t$
or
$M e^{\sigma t} \sin (\omega t+\phi)$
$M_{0} e^{a t} \cos \omega t+M_{1} t e^{\sigma t} \cos \omega t+\cdots$
$+M_{k-1} 1^{k-1} e^{e t} \cos \omega t+N_{0} e^{a t} \sin \omega t$
$+N_{1} t e^{s t} \sin \omega t+\cdots$
$+N_{k-1} 1^{k-1} e^{e t} \sin \omega t$

## Non-Homogeneous differential equation

- A non-homogeneous differential equation is one in which the forcing function is not identically zero for all t.
- Obtain the solution $\mathrm{x}(\mathrm{t})$ of an equation with constant coefficients

$$
\begin{equation*}
a_{n} x^{(n)}(t)+a_{n-1} x^{(n-1)}(t)+\cdots+a_{0} x(t)=f(t) \tag{4.55}
\end{equation*}
$$

Let $x_{p}(t)$ be a particular solution for Eq. 4.55, and let $x_{0}(t)$ be the solution of the homogeneous equation obtained by letting $f(t)=0$ in Eq. 4.55. It is readily seen that

$$
\begin{equation*}
x(t)=x_{p}(t)+x_{c}(t) \tag{4.56}
\end{equation*}
$$

## Continue......

is also a solution of Eq. 4.55. According to the uniqueness theorem, the solution $x(t)$ in Eq. 4.56 is the unique solution for the nonhomogeneous differential equation if it satisfies the specified initial conditions at $t=0+.{ }^{1}$ In Eq. 4.56, $x_{p}(t)$ is the particular integral; $x_{0}(t)$ is the complementary function; and $x(t)$ is the total solution.

Since we already know how to find the complementary function $x_{c}(t)$, we now have to find the particular integral $x_{p}(t)$. In solving for $x_{p}(t)$, a very reliable rule of thumb is that $x_{p}(t)$ usually takes the same form as the forcing function if $f(t)$ can be expressed as a sum of exponential functions. Specifically, $x_{p}(t)$ assumes the form of $f(t)$ plus all its derivatives. For example, if $f(t)=\alpha \sin \omega t$, then $x_{p}(t)$ takes the form

$$
x_{p}(t)=A \sin \omega t+B \cos \omega t
$$

The only unknowns that must be determined are the coefficients $A$ and $B$ of the terms in $x_{p}(t)$. The method for obtaining $x_{p}(t)$ is appropriately called the method of undetermined coefficients or unknown coefficients.
In illustrating the method of unknown coeficients, let us take $f(t)$ to be

$$
\begin{equation*}
f(t)=\alpha e^{\beta t} \tag{4.57}
\end{equation*}
$$

where $\alpha$ and $\beta$ are arbitrary constants. We then assume $x_{p}(t)$ to have a similar form, that is,

$$
\begin{equation*}
x_{p}(t)=A e^{\beta t} \tag{4.58}
\end{equation*}
$$

and $A$ is the unknown coefficient. To determine $A$, we simply substitute the assumed solution $x_{p}(t)$ into the differential equation. Thus,

$$
\begin{equation*}
A e^{\beta t}\left(a_{n} \beta^{n}+a_{n-1} \beta^{n-1}+\cdots+a_{1} \beta+a_{0}\right)=\alpha e^{\beta t} \tag{4.59}
\end{equation*}
$$

## Continue....

We see that the polynomial within the parentheses is the characteristic equation $H(p)$ with $p=\beta$. Consequluently, the unknown coefcicent is obtained as
provided that $H(\beta) \neq 0$.

$$
\begin{equation*}
A=\frac{\alpha}{H(\beta)} \tag{4.60}
\end{equation*}
$$

